Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Science ; 384(6694): 428-437, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38662827

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Bacteroides fragilis , Gastrointestinal Microbiome , Immune Checkpoint Inhibitors , Neoplasms , Vitamin D , Animals , Female , Humans , Male , Mice , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/microbiology , Neoplasms/therapy , Vitamin D/administration & dosage , Vitamin D/metabolism , Diet , Cell Line, Tumor , Calcifediol/administration & dosage , Calcifediol/metabolism , Vitamin D-Binding Protein/genetics , Vitamin D-Binding Protein/metabolism
2.
Nat Immunol ; 25(5): 886-901, 2024 May.
Article En | MEDLINE | ID: mdl-38609547

Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4+ T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1fl/flMaffl/flCd4Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in TH1/NK/ILC1 effector genes in LPLs, while Prdm1fl/flCd4Cre and Maffl/flCd4Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maffl/flCd4Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.


Colitis , Helicobacter hepaticus , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-maf , Animals , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Mice , Proto-Oncogene Proteins c-maf/genetics , Colitis/immunology , Colitis/genetics , Humans , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/genetics , Gene Expression Regulation , Disease Models, Animal
3.
Sci Immunol ; 9(94): eadk0092, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38579014

The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.


B-Lymphocytes , Immunoglobulin G , Membrane Proteins , Animals , Mice , Germinal Center , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Signal Transduction , Membrane Proteins/metabolism
4.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Article En | MEDLINE | ID: mdl-38351322

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Dendritic Cells , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Mice , Cell Differentiation
6.
Sci Adv ; 9(40): eadf6911, 2023 10 06.
Article En | MEDLINE | ID: mdl-37792947

Stem cell (SC) differentiation and maintenance of resultant progeny underlie cell turnover in many organs, but it is difficult to pinpoint the contribution of either process. In the pituitary, a central regulator of endocrine axes, adult SCs undergo activation after target organ ablation, providing a well-characterized paradigm to study an adaptative response in a multi-organ system. Here, we used single-cell technologies to characterize SC heterogeneity and mobilization together with lineage tracing. We show that SC differentiation occurs more frequently than thought previously. In adaptative conditions, differentiation increases and is more diverse than demonstrated by the lineage tracing experiments. Detailed examination of SC progeny suggests that maintenance of selected nascent cells underlies SC output, highlighting a trophic role for the microenvironment. Analyses of cell trajectories further predict pathways and potential regulators. Our model provides a valuable system to study the influence of evolving states on the mechanisms of SC mobilization.


Stem Cells , Stem Cells/metabolism , Cell Differentiation
7.
bioRxiv ; 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37609190

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

8.
Nature ; 621(7980): 813-820, 2023 Sep.
Article En | MEDLINE | ID: mdl-37587341

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Endothelial Cells , Lung , Orthomyxoviridae Infections , Receptors, Aryl Hydrocarbon , Animals , Humans , Mice , Apelin/metabolism , Diet , Endothelial Cells/metabolism , Endothelium/cytology , Endothelium/metabolism , Epithelial Cells/metabolism , Erythrocytes/metabolism , Influenza, Human/immunology , Influenza, Human/metabolism , Intestines/metabolism , Leukocytes/metabolism , Ligands , Lung/immunology , Lung/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Receptors, Aryl Hydrocarbon/metabolism
9.
Dev Cell ; 57(16): 1957-1975.e9, 2022 08 22.
Article En | MEDLINE | ID: mdl-35998585

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.


Neural Stem Cells , Animals , Cell Differentiation , Ependyma , Mammals , Mice , Neuroglia , Spinal Cord
10.
Cancer Lett ; 544: 215800, 2022 09 28.
Article En | MEDLINE | ID: mdl-35803476

Cancer cells thrive when embedded in a fine-tuned cellular and extracellular environment or tumour microenvironment (TME). There is a general understanding of a co-evolution between cancer cells and their surrounding TME, pointing at a functional connection between cancer cells characteristics and the perturbations induced in their surrounding tissue. However, it has never been formally proven whether this functional connection needs to be set from the start or if aggressive cancer cells always dominate their microenvironmental any point in time. This would require a dedicated experimental setting where malignant cells are challenged to grow in a different TME from the one they would naturally create. Here we generated an experimental setting where we transiently perturb the secretory profile of aggressive breast cancer cells without affecting their intrinsic growth ability, which led to the initial establishment of an atypical TME. Interestingly, even if initially tumours are formed, this atypical TME evolves to impair long term in vivo cancer growth. Using a combination of in vivo transcriptomics, protein arrays and in vitro co-cultures, we found that the atypical TME culminates in the infiltration of macrophages with STAT1high activity. These macrophages show strong anti-tumoural functions which reduce long-term tumour growth, despite lacking canonical M1 markers. Importantly, gene signatures of the mesenchymal compartment of the TME, as well as the anti-tumoural macrophages, show striking prognostic power that correlates with less aggressive human breast cancers.


Breast Neoplasms , Tumor Microenvironment , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Macrophages/pathology
11.
Nat Commun ; 13(1): 1827, 2022 04 05.
Article En | MEDLINE | ID: mdl-35383166

The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation.


Intestinal Mucosa , Receptors, Aryl Hydrocarbon , Colon/pathology , Intestinal Mucosa/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Stem Cells/metabolism
12.
J Clin Invest ; 132(9)2022 05 02.
Article En | MEDLINE | ID: mdl-35316216

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


Lymphoma, B-Cell , Lymphoma , Cell Proliferation , Germinal Center , Humans , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism
13.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Article En | MEDLINE | ID: mdl-35165418

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Energy Metabolism/drug effects , Extracellular Matrix/drug effects , Lung Neoplasms/drug therapy , Mechanotransduction, Cellular/drug effects , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell-Matrix Junctions/drug effects , Cell-Matrix Junctions/metabolism , Cell-Matrix Junctions/pathology , Dynamins/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Peptide Elongation Factors/metabolism , Tumor Microenvironment
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article En | MEDLINE | ID: mdl-35042798

Mutations in the SETX gene, which encodes Senataxin, are associated with the progressive neurodegenerative diseases ataxia with oculomotor apraxia 2 (AOA2) and amyotrophic lateral sclerosis 4 (ALS4). To identify the causal defect in AOA2, patient-derived cells and SETX knockouts (human and mouse) were analyzed using integrated genomic and transcriptomic approaches. A genome-wide increase in chromosome instability (gains and losses) within genes and at chromosome fragile sites was observed, resulting in changes to gene-expression profiles. Transcription stress near promoters correlated with high GCskew and the accumulation of R-loops at promoter-proximal regions, which localized with chromosomal regions where gains and losses were observed. In the absence of Senataxin, the Cockayne syndrome protein CSB was required for the recruitment of the transcription-coupled repair endonucleases (XPG and XPF) and RAD52 recombination protein to target and resolve transcription bubbles containing R-loops, leading to genomic instability. These results show that transcription stress is an important contributor to SETX mutation-associated chromosome fragility and AOA2.


Chromosomal Instability/genetics , DNA Helicases/metabolism , Multifunctional Enzymes/metabolism , RNA Helicases/metabolism , Spinocerebellar Ataxias/congenital , Animals , Apraxias/genetics , Ataxia/genetics , Cell Line , Cerebellar Ataxia/genetics , DNA Helicases/genetics , DNA Repair/genetics , Gene Expression Profiling/methods , Genomic Instability/genetics , Genomics/methods , Humans , Mice , Mouse Embryonic Stem Cells , Multifunctional Enzymes/genetics , Mutation/genetics , Neurodegenerative Diseases/genetics , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA Helicases/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Transcriptome/genetics
15.
J Immunol ; 208(4): 941-954, 2022 02 15.
Article En | MEDLINE | ID: mdl-35082159

TPL-2 kinase plays an important role in innate immunity, activating ERK1/2 MAPKs in myeloid cells following TLR stimulation. We investigated how TPL-2 controls transcription in TLR4-stimulated mouse macrophages. TPL-2 activation of ERK1/2 regulated expression of genes encoding transcription factors, cytokines, chemokines, and signaling regulators. Bioinformatics analysis of gene clusters most rapidly induced by TPL-2 suggested that their transcription was mediated by the ternary complex factor (TCF) and FOS transcription factor families. Consistently, TPL-2 induced ERK1/2 phosphorylation of the ELK1 TCF and the expression of TCF target genes. Furthermore, transcriptomic analysis of TCF-deficient macrophages demonstrated that TCFs mediate approximately half of the transcriptional output of TPL-2 signaling, partially via induced expression of secondary transcription factors. TPL-2 signaling and TCFs were required for maximal TLR4-induced FOS expression. Comparative analysis of the transcriptome of TLR4-stimulated Fos -/- macrophages indicated that TPL-2 regulated a significant fraction of genes by controlling FOS expression levels. A key function of this ERK1/2-TCF-FOS pathway was to mediate TPL-2 suppression of type I IFN signaling, which is essential for host resistance against intracellular bacterial infection.


Interferon-beta/genetics , MAP Kinase Kinase Kinases/metabolism , Macrophages/immunology , Macrophages/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Animals , Gene Expression Regulation , Interferon-beta/metabolism , Lipopolysaccharides/immunology , MAP Kinase Kinase Kinases/genetics , Macrophage Activation/genetics , Macrophage Activation/immunology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-fos/metabolism , TCF Transcription Factors/metabolism
16.
J Genet Genomics ; 49(7): 654-665, 2022 07.
Article En | MEDLINE | ID: mdl-34896608

Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in the Elongator complex protein 1 (ELP1) gene that leads to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD headed to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different copy numbers of the human FD ELP1 transgene into the Elp1 knockout mouse (Elp1-/-) and observed that human ELP1 expression rescues embryonic development in a dose-dependent manner. We then conducted a comprehensive transcriptome analysis in mouse embryos to identify genes and pathways whose expression correlates with the amount of ELP1. We found that ELP1 is essential for the expression of genes responsible for nervous system development. Further, gene length analysis of the differentially expressed genes showed that the loss of Elp1 mainly impacts the expression of long genes and that by gradually restoring Elongator, their expression is progressively rescued. Finally, through evaluation of co-expression modules, we identified gene sets with unique expression patterns that depended on ELP1 expression.


Carrier Proteins , Dysautonomia, Familial , Animals , Carrier Proteins/genetics , Disease Models, Animal , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Gene Expression , Homozygote , Humans , Mice , Sequence Deletion
17.
J Exp Med ; 218(10)2021 10 04.
Article En | MEDLINE | ID: mdl-34491266

Blood transcriptomics have revealed major characteristics of the immune response in active TB, but the signature early after infection is unknown. In a unique clinically and temporally well-defined cohort of household contacts of active TB patients that progressed to TB, we define minimal changes in gene expression in incipient TB increasing in subclinical and clinical TB. While increasing with time, changes in gene expression were highest at 30 d before diagnosis, with heterogeneity in the response in household TB contacts and in a published cohort of TB progressors as they progressed to TB, at a bulk cohort level and in individual progressors. Blood signatures from patients before and during anti-TB treatment robustly monitored the treatment response distinguishing early and late responders. Blood transcriptomics thus reveal the evolution and resolution of the immune response in TB, which may help in clinical management of the disease.


Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Antitubercular Agents/therapeutic use , Biological Evolution , Contact Tracing , Female , Gene Expression , Humans , Male , Prospective Studies , Risk Factors , Sequence Analysis, RNA , Treatment Outcome , Tuberculosis, Pulmonary/diagnostic imaging , Tuberculosis, Pulmonary/drug therapy
18.
Science ; 373(6551): 231-236, 2021 07 09.
Article En | MEDLINE | ID: mdl-34244417

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , RNA Interference , RNA Viruses/physiology , RNA, Viral/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Stem Cells/enzymology , Stem Cells/virology , Alternative Splicing , Animals , Brain/enzymology , Brain/virology , Cell Line , DEAD-box RNA Helicases/chemistry , Humans , Immunity, Innate , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Organoids/enzymology , Organoids/virology , RNA Virus Infections/enzymology , RNA Virus Infections/immunology , RNA Virus Infections/virology , RNA Viruses/genetics , RNA Viruses/immunology , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , Ribonuclease III/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication , Zika Virus/genetics , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/enzymology , Zika Virus Infection/immunology , Zika Virus Infection/virology
19.
Sci Adv ; 7(23)2021 06.
Article En | MEDLINE | ID: mdl-34088668

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.

20.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Article En | MEDLINE | ID: mdl-34081922

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Cross-Priming/immunology , Gelsolin/metabolism , Immunity , Lectins, C-Type/metabolism , Neoplasms/immunology , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , Actins/metabolism , Amino Acid Sequence , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Priming/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Gelsolin/chemistry , Gelsolin/deficiency , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Mice, Inbred C57BL , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Binding/drug effects , Survival Analysis
...