Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Small ; : e2307180, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38054789

Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2 RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2 RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO- . In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO- ) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2 RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.

2.
ACS Nano ; 15(9): 14996-15006, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34515484

The active phase and catalytic mechanisms of Ni-based layered double hydroxide (LDH) materials for oxygen evolution reaction (OER) have no common consensus and remain controversial. Moreover, engineering the site activity and the number of active sites of LDHs is an efficient approach to advance the OER activity, as the thickness and stacking structure of the LDHs layer limit the catalytic activity. This work presents an interesting in situ approach of tuning the site activity and number of active sites of NiMn-LDHs, which exhibit the superior OER performance (onset overpotential of 0.17 V and overpotential of 0.24 V at 10 mA cm-2). The fundamental mechanistic insights and active phases during the OER process are characterized by in operando techniques along with the computational density functional theory calculations, revealing that the Ni site constitutes the OER activity and the dynamically generated NiOOH moiety is the active phase. We also prove that Ni sites undergo a reversible oxidation state under the working conditions to create active NiOOH species which catalyze the water to generate oxygen. These findings suggest that the Ni(III) phase in NiMn-LDHs is the OER active site and Mn promotes the electronic properties of Ni sites. Utilizing in situ/in operando techniques and theoretical calculation, we find that the in situ intercalation of guest anions allows the expansion of the LDH layers and keeps the active NiOOH species under the oxidation state of +3 via electron coupling, which ultimately tunes the site populations and site activity toward the superior OER activity, respectively. This work thus targets to provide insight into strategies to design the next generation of highly active catalysts for water electrolysis and fuel cell technologies.

3.
ACS Nano ; 14(2): 1770-1782, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-32003975

Herein, we report hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowire (Ag NWs) cores as efficient, low-cost, and durable oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional electrocatalysts for metal-air batteries. The hierarchical 3D architectured Ag NW@NiMn-LDH catalysts exhibit superb OER/ORR activities in alkaline conditions. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to increasing both site activity and site populations. The synergistic contributions from the hierarchical 3D open-pore structure of the LDH shells, improved electrical conductivity, and small thickness of the LDHs shells are associated with more accessible site populations. Moreover, the charge transfer between Ag cores and metals of LDH shells and the formation of defective and distorted sites (less coordinated Ni and Mn sites) strongly enhance the site activity. Thus, Ag NW@NiMn-LDH hybrids exhibit a 0.75 V overvoltage difference between ORR and OER with excellent durability for 30 h, demonstrating the distinguished bifunctional electrocatalyst reported to date. Interestingly, the homemade rechargeable Zn-air battery using the hybrid Ag NW@NiMn-LDHs (1:2) catalyst as the air electrode exhibits a charge-discharge voltage gap of ∼0.77 V at 10 mA cm-2 and shows excellent cycling stability. Thus, the concept of the hierarchical 3D architecture of Ag NW@NiMn-LDHs considerably advances the practice of LDHs toward metal-air batteries and oxygen electrocatalysts.

...