Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105545

RESUMEN

Research in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to remodel how affective technologies can help address body and emotional self-awareness. We present an overview of biosignals that have become standard in low-cost physiological monitoring and show how these can be matched with methods and engagements used by interaction designers skilled in designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers unprecedented design opportunities that inspire further research. Through first-person soma design, an approach that draws upon the designer's felt experience and puts the sentient body at the forefront, we outline a comprehensive work for the creation of novel interactions in the form of couplings that combine biosensing and body feedback modalities of relevance to affective health. These couplings lie within the creation of design toolkits that have the potential to render rich embodied interactions to the designer/user. As a result we introduce the concept of "orchestration". By orchestration, we refer to the design of the overall interaction: coupling sensors to actuation of relevance to the affective experience; initiating and closing the interaction; habituating; helping improve on the users' body awareness and engagement with emotional experiences; soothing, calming, or energising, depending on the affective health condition and the intentions of the designer. Through the creation of a range of prototypes and couplings we elicited requirements on broader orchestration mechanisms. First-person soma design lets researchers look afresh at biosignals that, when experienced through the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it, understand it and reflect upon our bodies.


Asunto(s)
Emociones , Salud Mental , Monitoreo Fisiológico/instrumentación , Afecto , Concienciación , Técnicas Biosensibles , Retroalimentación Fisiológica , Humanos , Percepción , Tecnología , Dispositivos Electrónicos Vestibles
2.
Healthcare (Basel) ; 8(2)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316370

RESUMEN

Stress is an inescapable element of the modern age. Instances of untreated stress may lead to a reduction in the individual's health, well-being and socio-economic situation. Stress management application development for wearable smart devices is a growing market. The use of wearable smart devices and biofeedback for individualized real-life stress reduction interventions has received less attention. By using our unobtrusive automatic stress detection system for use with consumer-grade smart bands, we first detected stress levels. When a high stress level is detected, our system suggests the most appropriate relaxation method by analyzing the physical activity-based contextual information. In more restricted contexts, physical activity is lower and mobile relaxation methods might be more appropriate, whereas in free contexts traditional methods might be useful. We further compared traditional and mobile relaxation methods by using our stress level detection system during an eight day EU project training event involving 15 early stage researchers (mean age 28; gender 9 Male, 6 Female). Participants' daily stress levels were monitored and a range of traditional and mobile stress management techniques was applied. On day eight, participants were exposed to a 'stressful' event by being required to give an oral presentation. Insights about the success of both traditional and mobile relaxation methods by using the physiological signals and collected self-reports were provided.

3.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033238

RESUMEN

Chronic stress leads to poor well-being, and it has effects on life quality and health. Societymay have significant benefits from an automatic daily life stress detection system using unobtrusivewearable devices using physiological signals. However, the performance of these systems is notsufficiently accurate when they are used in unrestricted daily life compared to the systems testedin controlled real-life and laboratory conditions. To test our stress level detection system thatpreprocesses noisy physiological signals, extracts features, and applies machine learning classificationtechniques, we used a laboratory experiment and ecological momentary assessment based datacollection with smartwatches in daily life. We investigated the effect of different labeling techniquesand different training and test environments. In the laboratory environments, we had more controlledsituations, and we could validate the perceived stress from self-reports. When machine learningmodels were trained in the laboratory instead of training them with the data coming from daily life,the accuracy of the system when tested in daily life improved significantly. The subjectivity effectcoming from the self-reports in daily life could be eliminated. Our system obtained higher stresslevel detection accuracy results compared to most of the previous daily life studies.


Asunto(s)
Monitores de Ejercicio , Estrés Psicológico/diagnóstico , Adulto , Algoritmos , Ansiedad , Recolección de Datos , Diseño de Equipo , Femenino , Humanos , Aprendizaje Automático , Masculino , Autoinforme , Habla , Encuestas y Cuestionarios , Adulto Joven
4.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31003456

RESUMEN

The negative effects of mental stress on human health has been known for decades. High-level stress must be detected at early stages to prevent these negative effects. After the emergence of wearable devices that could be part of our lives, researchers have started detecting extreme stress of individuals with them during daily routines. Initial experiments were performed in laboratory environments and recently a number of works took a step outside the laboratory environment to the real-life. We developed an automatic stress detection system using physiological signals obtained from unobtrusive smart wearable devices which can be carried during the daily life routines of individuals. This system has modality-specific artifact removal and feature extraction methods for real-life conditions. We further tested our system in a real-life setting with collected physiological data from 21 participants of an algorithmic programming contest for nine days. This event had lectures, contests as well as free time. By using heart activity, skin conductance and accelerometer signals, we successfully discriminated contest stress, relatively higher cognitive load (lecture) and relaxed time activities by using different machine learning methods.


Asunto(s)
Respuesta Galvánica de la Piel/fisiología , Monitoreo Fisiológico , Estrés Psicológico/diagnóstico , Dispositivos Electrónicos Vestibles , Adulto , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Aprendizaje Automático , Masculino , Fotopletismografía/métodos , Piel/fisiopatología , Teléfono Inteligente , Estrés Psicológico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA