Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 63: 102718, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120928

RESUMEN

A complex interplay of social, lifestyle, and physiological factors contribute to Black Americans having the highest blood pressure (BP) in America. One potential contributor to Black adult's higher BP may be reduced nitric oxide (NO) bioavailability. Therefore, we sought to determine whether augmenting NO bioavailability with acute beetroot juice (BRJ) supplementation would reduce resting BP and cardiovascular reactivity in Black and White adults, but to a greater extent in Black adults. A total of 18 Black and 20 White (∼equal split by biological sex) young adults completed this randomized, placebo-controlled (nitrate (NO3-)-depleted BRJ), crossover design study. We measured heart rate, brachial and central BP, and arterial stiffness (via pulse wave velocity) at rest, during handgrip exercise, and during post-exercise circulatory occlusion. Compared with White adults, Black adults exhibited higher pre-supplementation resting brachial and central BP (Ps ≤0.035; e.g., brachial systolic BP: 116(11) vs. 121(7) mmHg, P = 0.023). Compared with placebo, BRJ (∼12.8 mmol NO3-) reduced resting brachial systolic BP similarly in Black (Δ-4±10 mmHg) and White (Δ-4±7 mmHg) adults (P = 0.029). However, BRJ supplementation reduced BP in males (Ps ≤ 0.020) but not females (Ps ≥ 0.299). Irrespective of race or sex, increases in plasma NO3- were associated with reduced brachial systolic BP (ρ = -0.237, P = 0.042). No other treatment effects were observed for BP or arterial stiffness at rest or during physical stress (i.e., reactivity); Ps ≥ 0.075. Despite young Black adults having higher resting BP, acute BRJ supplementation reduced systolic BP in young Black and White adults by a similar magnitude, an effect that was driven by males.


Asunto(s)
Hipertensión , Análisis de la Onda del Pulso , Masculino , Adulto Joven , Humanos , Presión Sanguínea , Fuerza de la Mano , Blanco , Suplementos Dietéticos , Nitratos/farmacología , Antioxidantes/farmacología , Óxido Nítrico/farmacología
2.
Nanotechnology ; 32(19): 195102, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33540388

RESUMEN

This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotubes to induce in vivo, localized hyperthermic ablation of cells as a potential methodology for the treatment of localized tumors. Compared to conventional methods, the proposed approach can create higher temperatures in a rapid and localized fashion, under low radiation levels, eliminating some of the unwanted side effects. Following successful ablation of cancer cells in cell culture and zebrafish tumor-xenograft models, it is hypothesized that a cancer treatment can be developed using safe microwave irradiation for selective ablation of tumor cells in vivo using carbon nanotube-Antibody (CNT-Ab) conjugates as a targeting agent. In this study, mice were used as an animal model for the optimization of the proposed microwave treatment strategy. The safe dose of CNT-Ab and microwave radiation levels for mice were determined. Further, CNT-Ab distribution and toxicology in mice were qualitatively determined for a time span of two weeks following microwave hyperthermia. The results indicate no toxicity associated with the CNT-Ab in the absence of microwaves. CNTs are only found in the proximity of the site of injection and have been shown to effectively cause hyperthermia induced necrosis upon exposure to microwaves with no noticeable damage to other tissues that are not in direct contact with the CNT-Ab. To understand the cellular immune response towards CNT-Abs, transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to assay for their ability to phagocytize CNT-Ab. Our results indicate that macrophages and neutrophils were able to actively phagocytose CNT-Abs shortly after injection. Taken together, this is the first study to show that CNTs can be used in combination with microwaves to cause targeted ablation of cells in mice without any side effects, which would be ideal for cancer therapies.


Asunto(s)
Técnicas de Ablación/métodos , Microondas , Nanotubos de Carbono/química , Técnicas de Ablación/efectos adversos , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Calor , Masculino , Ratones , Ratones Endogámicos C57BL , Nanotubos de Carbono/toxicidad , Necrosis/patología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...