Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Environ Toxicol Chem ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38801401

Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;00:1-22. © 2024 SETAC.

2.
MethodsX ; 12: 102645, 2024 Jun.
Article En | MEDLINE | ID: mdl-38524303

Distributions of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and fecal viral biomarkers between solid and liquid phases of wastewater are largely unknown. Herein, distributions of SARS-CoV-2, Pepper Mild Mottle Virus (PMMoV), and F-RNA bacteriophage group II (FRNAPH-II) were determined by viral RNA RT-qPCR. Comparison of viral recovery using three conventional fractionation methods included membrane filtration, a combination of mid-speed centrifugation and membrane filtration, and high-speed centrifugation. SARS-CoV-2 partitioned to the solids fraction in greater abundance compared to liquid fractions in a combination of mid-speed centrifugation and membrane filtration and high-speed centrifugation, but not in membrane filtration method in a particular assay, while fecal biomarkers (PMMoV and FRNAPH-II) exhibited the reciprocal relationship. The wastewater fractionation method had minimal effects on the solids-liquids distribution for all viral and phage markers tested; however, viral RNA load was significantly greater in solid-liquid fractions viral RNA loads compared with the than whole-wastewater PEG precipitation. A RNeasy PowerWater Kit with PCR inhibitor removal resulted in greater viral RNA loads and lesser PCR inhibition compared to a QIAamp Viral RNA Mini Kit without PCR inhibitor removal. These results support the development of improved methods and interpretation of WBE of SARS-CoV-2. •Distribution of SARS-CoV-2 to liquid and solid portions was addressed.•Addressing PCR inhibition is important in wastewater-based epidemiology.•Fraction methods have minimal effect.

3.
Chemosphere ; 333: 138682, 2023 Aug.
Article En | MEDLINE | ID: mdl-37201600

Wastewater monitoring and epidemiology have seen renewed interest during the recent COVID-19 pandemic. As a result, there is an increasing need to normalize wastewater-derived viral loads in local populations. Chemical tracers, both exogenous and endogenous compounds, have proven to be more stable and reliable for normalization than biological indicators. However, differing instrumentation and extraction methods can make it difficult to compare results. This review examines current extraction and quantification methods for ten common population indicators: creatinine, coprostanol, nicotine, cotinine, sucralose, acesulfame, androstenedione 5-hydroindoleacetic acid (5-HIAA), caffeine, and 1,7-dimethyluric acid. Some wastewater parameters such as ammonia, total nitrogen, total phosphorus, and daily flowrate were also evaluated. The analytical methods included direct injection, dilute and shoot, liquid/liquid, and solid phase extraction (SPE). Creatine, acesulfame, nicotine, 5-HIAA and androstenedione have been analysed by direct injection into LC-MS; however, most authors prefer to include SPE steps to avoid matrix effects. Both LC-MS and GC-MS have been successfully used to quantify coprostanol in wastewater, and the other selected indicators have been quantified successfully with LC-MS. Acidification to stabilize the sample before freezing to maintain the integrity of samples has been reported to be beneficial. However, there are arguments both for and against working at acidic pHs. Wastewater parameters mentioned earlier are quick and easy to quantify, but the data does not always represent the human population effectively. A preference for population indicators originating solely from humans is apparent. This review summarises methods employed for chemical indicators in wastewater, provides a basis for choosing an appropriate extraction and analysis method, and highlights the utility of accurate chemical tracer data for wastewater-based epidemiology.


COVID-19 , Water Pollutants, Chemical , Humans , Wastewater , Nicotine/analysis , RNA, Viral , SARS-CoV-2 , Hydroxyindoleacetic Acid/analysis , Androstenedione/analysis , Cholestanol/analysis , Pandemics , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , Solid Phase Extraction/methods , Indicators and Reagents
4.
Chemosphere ; 334: 138991, 2023 Sep.
Article En | MEDLINE | ID: mdl-37209843

Microbial communities are an important component of freshwater biodiversity that is threatened by anthropogenic impacts. Wastewater discharges pose a particular concern by being major sources of anthropogenic contaminants and microorganisms that may influence the composition of natural microbial communities. Nevertheless, the effects of wastewater treatment plant (WWTP) effluents on microbial communities remain largely unexplored. In this study, the effects of wastewater discharges on microbial communities from five different WWTPs in Southern Saskatchewan were investigated using rRNA gene metabarcoding. In parallel, nutrient levels and the presence of environmentally relevant organic pollutants were analyzed. Higher nutrient loads and pollutant concentrations resulted in significant changes in microbial community composition. The greatest changes were observed in Wascana Creek (Regina), which was found to be heavily polluted by wastewater discharges. Several taxa occurred in greater relative abundance in the wastewater-influenced stream segments, indicating anthropogenic pollution and eutrophication, especially taxa belonging to Proteobacteria, Bacteroidota, and Chlorophyta. Strong decreases were measured within the taxa Ciliphora, Diatomea, Dinoflagellata, Nematozoa, Ochrophyta, Protalveolata, and Rotifera. Across all sample types, a significant decline in sulfur bacteria was measured, implying changes in functional biodiversity. In addition, downstream of the Regina WWTP, an increase in cyanotoxins was detected which was correlated with a significant change in cyanobacterial community composition. Overall, these data suggest a causal relationship between anthropogenic pollution and changes in microbial communities, possibly reflecting an impairment of ecosystem health.


Microbiota , Wastewater , Grassland , Canada , Biodiversity , Bacteria/genetics
5.
Sci Total Environ ; 876: 162800, 2023 Jun 10.
Article En | MEDLINE | ID: mdl-36914129

Wastewater surveillance (WWS) is useful to better understand the spreading of coronavirus disease 2019 (COVID-19) in communities, which can help design and implement suitable mitigation measures. The main objective of this study was to develop the Wastewater Viral Load Risk Index (WWVLRI) for three Saskatchewan cities to offer a simple metric to interpret WWS. The index was developed by considering relationships between reproduction number, clinical data, daily per capita concentrations of virus particles in wastewater, and weekly viral load change rate. Trends of daily per capita concentrations of SARS-CoV-2 in wastewater for Saskatoon, Prince Albert, and North Battleford were similar during the pandemic, suggesting that per capita viral load can be useful to quantitatively compare wastewater signals among cities and develop an effective and comprehensible WWVLRI. The effective reproduction number (Rt) and the daily per capita efficiency adjusted viral load thresholds of 85 × 106 and 200 × 106 N2 gene counts (gc)/population day (pd) were determined. These values with rates of change were used to categorize the potential for COVID-19 outbreaks and subsequent declines. The weekly average was considered 'low risk' when the per capita viral load was 85 × 106 N2 gc/pd. A 'medium risk' occurs when the per capita copies were between 85 × 106 and 200 × 106 N2 gc/pd. with a rate of change <100 %. The start of an outbreak is indicated by a 'medium-high' risk classification when the week-over-week rate of change was >100 %, and the absolute magnitude of concentrations of viral particles was >85 × 106 N2 gc/pd. Lastly, a 'high risk' occurs when the viral load exceeds 200 × 106 N2 gc/pd. This methodology provides a valuable resource for decision-makers and health authorities, specifically given the limitation of COVID-19 surveillance based on clinical data.


COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cities/epidemiology , Grassland , Wastewater , Wastewater-Based Epidemiological Monitoring , Saskatchewan/epidemiology
6.
Environ Toxicol Chem ; 42(3): 684-697, 2023 03.
Article En | MEDLINE | ID: mdl-36621957

Cattle treated with LongRange®, an injectable formulation of the parasiticide eprinomectin, fecally excrete insecticidal residues for an extended period post application. We examined the nontarget effect of these residues by comparing insect communities developing in dung of untreated cattle (week 0) with those developing in dung of cattle treated 1, 2, 4, 8, 12, 16, 20, and 24 or 25 weeks previously. Chemical analyses of dung showed that eprinomectin concentrations peaked at 1 week post application and were still detectable at 25 weeks. Results from two separate experiments showed that dung of untreated cattle supported more total insects (beetles, flies, parasitoid wasps) and insect species than did dung of cattle treated for ≤12 weeks (Experiment 1) and ≤25 weeks (Experiment 2) previously. For the two experiments, an effect of residue on individual taxa was either not detected (nine cases) or was determined to suppress insect development in dung of cattle treated for 8-12 weeks (two cases), 12-16 weeks (three cases), 16-20 weeks (two cases), or 24 or 25 weeks (six cases) previously. Flies and their parasitoid wasps were particularly sensitive to residues with suppression often at or near 100%. These results show that cattle treated with LongRange in spring will fecally excrete residues for the entire grazing season with an associated simplification of the dung insect community. The effect of this simplification on the long-term health on dung-breeding populations of insects on pastures and dung degradation was not examined in the present study, but merits future research. Environ Toxicol Chem 2023;42:684-697. © 2023 His Majesty the King in Right of Canada. Environmental Toxicology and Chemistry © 2023 SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Coleoptera , Diptera , Animals , Cattle , Antiparasitic Agents/analysis , Antiparasitic Agents/pharmacology , Seasons , Ivermectin/analysis , Insecta , Feces/chemistry
7.
Environ Sci Technol ; 56(22): 15839-15847, 2022 11 15.
Article En | MEDLINE | ID: mdl-36268931

In vitro biotransformation assays with primary trout hepatocytes (RT-HEP) or liver subcellular fractions (RT-S9) have been proposed as valuable tools to help scientists and regulators better understand the toxicokinetics of chemicals. While both assays have been applied successfully to a diversity of neutral organic chemicals, only the RT-S9 assay has been applied to a large number of ionizable organic chemicals. Here, a combination of an in vitro biotransformation assay with RT-HEP with an active transport assay based on the permanent rainbow trout liver cell line RTL-W1 was used to qualitatively predict the potential hepatic clearance of nine psychotropic drugs with various degrees of ionization. Predictions were compared with rates of clearance measured in isolated perfused rainbow trout livers, and the importance of active transport was verified in the presence of the active transport inhibitor cyclosporin A. For the first time, it was demonstrated that a combination of biotransformation and active transport assays is powerful for the prediction of rates of hepatic clearance of ionizable chemicals. Ultimately, it is expected that this approach will allow for use of fewer animals while at the same time improving our confidence in the use of data from in vitro assays in chemical risk assessment.


Liver , Oncorhynchus mykiss , Animals , Liver/metabolism , Oncorhynchus mykiss/metabolism , Hepatocytes/metabolism , Biotransformation , Organic Chemicals/metabolism , Psychotropic Drugs/metabolism
8.
Chemosphere ; 308(Pt 1): 136236, 2022 Dec.
Article En | MEDLINE | ID: mdl-36057354

Basin land-use interacts with hydrology to deliver chemical contaminants to riverine environments. These chemicals are eventually taken up by aquatic organisms, where they can cause harmful effects. However, knowledge gaps related to the connections between hydrological, chemical, and biological processes currently limit our ability to forecast potential future changes in contaminant concentrations accurately. In this study, concentrations of three pesticide classes (organochlorines, organophosphates, and herbicides) and a standard suite of trace metals were analyzed in the South Saskatchewan River, Canada in 2020 and 2021 in water, sediments, and fishes. Organochlorine pesticides have been banned in Canada since the 1970s, yet there were some detections for methoxychlor and lindane, predominantly in sediment and fish samples, which could be attributed to legacy contamination. Except for malathion and parathion, organophosphate pesticides were scarcely detected in both sampling years in all matrices, and neonicotinoids were below detection in all samples. Conversely, the herbicides 2,4-D and dicamba were detected consistently throughout all locations in water samples for both sampling years. Overall, concentrations were 3 times higher in 2020 when river discharge was ∼2 times higher, suggesting run-off from the surrounding catchment or disturbance of contaminated sediments. Analysis for trace metals revealed that Cu and Zn exceeded sediment quality guidelines in some locations. Mercury concentrations exceeded the guidelines for about 18% of the samples (water and sediment) analyzed. These findings fill gaps in monitoring datasets and highlight key links between hydrology and chemistry that can be further explored in computational models to predict future contaminant trends in freshwater systems.


Herbicides , Hydrocarbons, Chlorinated , Mercury , Parathion , Pesticides , Trace Elements , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Animals , Dicamba , Environmental Monitoring , Fishes , Geologic Sediments/chemistry , Herbicides/analysis , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis , Malathion , Mercury/analysis , Methoxychlor/analysis , Neonicotinoids/analysis , Pesticides/analysis , Rivers/chemistry , Trace Elements/analysis , Water/analysis , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 851(Pt 2): 158247, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-36007655

Most pharmaceuticals are found at trace concentrations in aquatic systems, but their continuous release and potential accumulation can lead to adverse health effects in exposed organisms. Concentrations can vary temporally, driven by variations in discharges of receiving waters, sorption to sediments, and other biotic and abiotic exchange processes. The principal aim of this research was to better understand the occurrence, trends, and dynamics of pharmaceuticals in a cold-climate, riverine environment. To this end, a suite of seven representative antipsychotic pharmaceuticals was measured upstream and downstream of two wastewater treatment plants (WWTPs) in Saskatchewan, Canada, located in the South Saskatchewan River and Wascana Creek, respectively, across three seasons. Concentrations of analytes were in the ng/L range and generally greater downstream of both WWTPs compared to upstream. Some compounds, including the tricyclic antidepressant amitriptyline, which was the most abundant analyte in water and sediment from both sites and across seasons, reached low µg/L concentrations. Data collected from this research effort indicate contamination with antipsychotic pharmaceuticals, with the potential to adversely impact exposed organisms.


Antipsychotic Agents , Water Pollutants, Chemical , Wastewater/analysis , Seasons , Water , Amitriptyline , Antidepressive Agents, Tricyclic , Environmental Monitoring , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations , Saskatchewan
10.
Sci Total Environ ; 841: 156741, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35716745

Monitoring the communal incidence of COVID-19 is important for both government and residents of an area to make informed decisions. However, continuous reliance on one means of monitoring might not be accurate because of biases introduced by government policies or behaviours of residents. Wastewater surveillance was employed to monitor concentrations of SARS-CoV-2 RNA in raw influent wastewater from wastewater treatment plants serving three Canadian Prairie cities with different population sizes. Data obtained from wastewater are not directly influenced by government regulations or behaviours of individuals. The means of three weekly samples collected using 24 h composite auto-samplers were determined. Viral loads were determined by RT-qPCR, and whole-genome sequencing was used to charaterize variants of concern (VOC). The dominant VOCs in the three cities were the same but with different proportions of sub-lineages. Sub-lineages of Delta were AY.12, AY.25, AY.27 and AY.93 in 2021, while the major sub-lineage of Omicron was BA.1 in January 2022, and BA.2 subsequently became a trace-level sub-variant then the predominant VOC. When each VOC was first detected varied among cities; However, Saskatoon, with the largest population, was always the first to present new VOCs. Viral loads varied among cities, but there was no direct correlation with population size, possibly because of differences in flow regimes. Population is one of the factors that affects trends in onset and development of local outbreaks during the pandemic. This might be due to demography or the fact that larger populations had greater potential for inter- and intra-country migration. Hence, wastewater surveillance data from larger cities can typically be used to indicate what to expect in smaller communities.


COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Canada , Cities , Humans , RNA, Viral , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
11.
Water Res ; 217: 118455, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35452970

Forms of organic contaminants is an important driver of bioavailable fraction and desorption kinetics of pollutants binding to sediments. To determine fluxes and resupply of nine environmentally-relevant antipsychotic drugs, which are emerging pollutants that can have adverse effects on aquatic organisms, interface passive samplers of diffusive gradients in thin films (DGT) were deployed for 21 days, in situ at the sediment-water interface in submerged sandy riverbank sediments. At each deployment time, samples of sediment were collected and subjected to consecutive extraction of pore water, as well as rapidly-desorbing (labile), stable-desorbing, and bound residue fractions. Concentrations of antipsychotic drugs decreased with sediment depth with the greatest concentrations observed in the top 2 cm. Positive fluxes of antipsychotic drugs were observed from sediment to surface water. The dynamic fraction transfer model indicated that the labile fraction can be resupplied with a lag time (> 21 d). When results were further interpreted using the DGT-induced fluxes in soils and sediments (DIFS) model, partial resupply of antipsychotic drugs from sediment particles to porewater was demonstrated. Desorption occurred within the entirety of the observed 15 cm depth of sediment. Fastest rates of resupply were found for carbamazepine and lamotrigine. Size of the labile pool estimated by the DIFS model did not fully explain the observed resupply, while a first-order three-compartment kinetic model for the fast-desorbing fraction can be used to supplement DIFS predictions with estimations of labile pool size.


Antipsychotic Agents , Water Pollutants, Chemical , Environmental Monitoring/methods , Geologic Sediments/chemistry , Kinetics , Phosphorus/analysis , Water , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 832: 155104, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35398429

Dynamic processes of organic contaminants in sediments can have important toxicological implications in aquatic systems. The current study used diffusive gradients in thin-films (DGT) devices in sandy sediments spiked with nine antipsychotics and in field sandy sediments. Samplers were deployed for 1 to 30 days to determine the flux of these compounds to DGT devices and the exchange rates between the porewater and sediment solid phase. The results showed a continuous removal of antipsychotics to a binding gel and induced a mobile flux from the DGT device to the adjacent sediment solution. A dynamic model, DGT-induced fluxes in soils and sediments, was used to derive rate constants of resupply of antipsychotics from solid phase to aqueous phase (response time, Tc) and distribution coefficients for labile antipsychotics. The largest labile pool was found for lamotrigine and carbamazepine in spiked sediments. Carbamazepine, clozapine, citalopram, and lamotrigine were resupplied rapidly by sediments with Tc (25-30 min). Tc values of bupropion and amitriptyline were the longest (≈5 h), which exhibited slow desorption rates in sediments. In field sediments, high resupply was found for carbamazepine and lamotrigine, which did not show higher labile pool. The Tc values were obviously higher in the filed sediments (52-171 h). Although the adsorption process is dominant for most studied antipsychotics in both spiked sediments and field sediments, the kinetic resupply of antipsychotic compounds may not be accurately estimated by laboratory-controlled incubation experiments. More studies are needed to explore the mechanisms of desorption kinetics by using in situ DGT technique in the field.


Antipsychotic Agents , Soil Pollutants , Carbamazepine , Environmental Monitoring/methods , Kinetics , Lamotrigine , Sand , Soil Pollutants/analysis
13.
Environ Sci Process Impacts ; 24(2): 242-251, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-35015011

While organic-diffusive gradients in thin films (o-DGT) passive samplers have been used to assess organic contaminants in water, the effects of biofouling on accurate analyte quantification by o-DGT are poorly understood. We evaluated the effects of biofouling on the uptake of six common perfluoroalkyl substances (PFAS) using a previously developed polyacrylamide-WAX (weak anion exchange) o-DGT without a filter membrane. Linear uptake (R2 > 0.91) over 21 days was observed in fouled samplers. The measured sampling rates (Rs) and accumulated masses of PFAS in pre-fouled o-DGT were significantly lower (p < 0.05, 20-39% relative error) than in control-fouled samplers. However, compared to clean o-DGT (no biofouling), the Rs of most PFAS in control-fouled samplers (i.e., those with clean diffusive and binding gels initially) were not affected by biofouling. Under flowing (∼5.8 cm s-1) and static conditions, the measured diffusive boundary layer (DBL) thicknesses for clean o-DGT were 0.016 and 0.082 cm, respectively, whereas the effective in situ biofilm thicknesses for fouled o-DGT were 0.018 and 0.14 cm, respectively. These results suggest that biofilm growth does not have significant effects on target PFAS sampling by o-DGT under typical flowing conditions (≥2 cm s-1). However, rapid surface growth of biofilm on o-DGT deployed in quiescent waters over long periods of time may exacerbate the adverse effects of biofilms, necessitating the estimation of biofilm thickness in situ. This study provides new insights for evaluating the capability of o-DGT samplers when biofilm growth can be significant.


Biofouling , Water Pollutants, Chemical , Diffusion , Environmental Monitoring/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis
14.
ACS ES T Water ; 2(11): 1852-1862, 2022 Nov 11.
Article En | MEDLINE | ID: mdl-37552734

There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.

15.
Sci Total Environ ; 807(Pt 3): 151060, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34710422

Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes of juvenile fathead minnows (Pimephales promelas) were investigated. Fish were exposed for two weeks, to concentrations of 0, 1, 10, 100, or 1000 µg BaP g-1 in the diet. The active gut microbiome was characterized using 16S rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes resulting from exposure to contaminants.


Cyprinidae , Gastrointestinal Microbiome , Animals , Benzo(a)pyrene/toxicity , Genomics , RNA, Ribosomal, 16S/genetics
16.
Chemosphere ; 287(Pt 3): 132352, 2022 Jan.
Article En | MEDLINE | ID: mdl-34826958

Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.


Environmental Pollutants , Water Pollutants, Chemical , Animals , Biological Assay , Diffusion , Environmental Monitoring , Water Pollutants, Chemical/analysis , Zebrafish
17.
Sci Total Environ ; 813: 152422, 2022 Mar 20.
Article En | MEDLINE | ID: mdl-34953827

The microbiome of the gut is vital for homeostasis of hosts with its ability to detoxify and activate toxicants, as well as signal to the immune and nervous systems. However, in the field of environmental toxicology, the gut microbiome has only recently been identified as a measurable indicator for exposure to environmental pollutants. Antidepressants found in effluents of wastewater treatment plants and surface waters have been shown to exhibit antibacterial-like properties in vitro, where some bacteria are known to express homologous proteins that bind antidepressants in vertebrates. Therefore, it has been hypothesized that exposure to antidepressant drugs might affect gut microbiota of aquatic organisms. In this study, the common antidepressant, fluoxetine, was investigated to determine whether it can modulate the gut microbiome of adult fathead minnows. A 28-day, sub-chronic, static renewal exposure was performed with nominal fluoxetine concentrations of 0.01, 10 or 100 µg/L. Using 16S rRNA amplicon sequencing, shifts among the gut-associated microbiota were observed in individuals exposed to the greatest concentration, with greater effects observed in females. These changes were associated with a decrease in relative proportions of commensal bacteria, which can be important for health of fish including bacteria essential for fatty acid oxidation, and an increase in relative proportions of pathogenic bacteria associated with inflammation. Results demonstrate, for the first time, how antidepressants found in some aquatic environments can influence gut microbiota of fishes.


Cyprinidae , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Female , Fluoxetine/toxicity , Humans , RNA, Ribosomal, 16S , Water Pollutants, Chemical/toxicity
18.
Anal Chem ; 93(49): 16289-16296, 2021 12 14.
Article En | MEDLINE | ID: mdl-34842413

Non-targeted analysis (NTA) encompasses a rapidly evolving set of mass spectrometry techniques aimed at characterizing the chemical composition of complex samples, identifying unknown compounds, and/or classifying samples, without prior knowledge regarding the chemical content of the samples. Recent advances in NTA are the result of improved and more accessible instrumentation for data generation and analysis tools for data evaluation and interpretation. As researchers continue to develop NTA approaches in various scientific fields, there is a growing need to identify, disseminate, and adopt community-wide method reporting guidelines. In 2018, NTA researchers formed the Benchmarking and Publications for Non-Targeted Analysis Working Group (BP4NTA) to address this need. Consisting of participants from around the world and representing fields ranging from environmental science and food chemistry to 'omics and toxicology, BP4NTA provides resources addressing a variety of challenges associated with NTA. Thus far, BP4NTA group members have aimed to establish a consensus on NTA-related terms and concepts and to create consistency in reporting practices by providing resources on a public Web site, including consensus definitions, reference content, and lists of available tools. Moving forward, BP4NTA will provide a setting for NTA researchers to continue discussing emerging challenges and contribute to additional harmonization efforts.


Benchmarking , Humans
19.
Environ Sci Process Impacts ; 23(9): 1405-1417, 2021 Sep 23.
Article En | MEDLINE | ID: mdl-34553727

Non-steroidal anti-inflammatory drugs are recognized widely as emerging contaminants. Sulindac has received additional attention as a prodrug in cancer treatment and because of its detection in drinking water and wastewaters. Nevertheless, there is limited knowledge about its kinetic behaviour and fate in the aquatic environment. In this work, the direct photolysis of sulindac, in which photochemical reactions were monitored and phototransformation products identified, was investigated under prolonged periods using UV-A and UV-B radiation and pH conditions (2 and 7) to evaluate the effect of the protonation state and the efficiency of the photolytic process. A novel kinetic mechanism has been proposed in which sulindac exhibits a consecutive reaction pathway, with pseudo-first order kinetics for rapid and reversible Z to E isomerization. Once photoequilibrium was reached, second-order degradation of the isomers in the presence of the new photodegradation products was observed. Photochemical transformation was faster under UV-B irradiation and lower pH, which suggests greater persistence of sulindac at more relevant environmental conditions of UV-A and pH 7. Two novel and major byproducts were identified, corresponding to the oxidative cleavage of the alkene exo to the indene system. The degradation pathway is mainly photoinduced, enhanced by acidic conditions and presumes the double bond as the most reactive site for the parent compound. This research demonstrates an approach for determining kinetics of compounds under challenging conditions, including, absorption from multiple electronic transitions, photoinduced products with unknown extinction coefficients, concentration dependence, photoinduced sensitizing intermediates, and speciation effects. Our work greatly improves our understanding of the degradation process of sulindac and will contribute to exposure assessments and treatment methodologies for this compound in impacted waters.


Pharmaceutical Preparations , Water Pollutants, Chemical , Anti-Inflammatory Agents, Non-Steroidal , Photolysis , Sulindac , Water , Water Pollutants, Chemical/analysis
20.
Rev Environ Contam Toxicol ; 258: 27-53, 2021.
Article En | MEDLINE | ID: mdl-34529146

Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 106 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC50 for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC50 for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.


Crop Protection , Herbicides , Animals , Ecosystem , Herbicides/toxicity , Photolysis , Plants
...