Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Pediatr Clin North Am ; 71(2): 179-197, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423715

Autism spectrum disorder (ASD) is clinically and etiologically heterogeneous. A causal genetic variant can be identified in approximately 20% to 25% of affected individuals with current clinical genetic testing, and all patients with an ASD diagnosis should be offered genetic etiologic evaluation. We suggest that exome sequencing with copy number variant coverage should be the first-line etiologic evaluation for ASD. Neuroimaging, neurophysiologic, metabolic, and other biochemical evaluations can provide insight into the pathophysiology of ASD but should be recommended in the appropriate clinical circumstances.


Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/genetics , DNA Copy Number Variations , Genetic Testing , Neuroimaging
2.
Genome Med ; 15(1): 102, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38031187

BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".


Proteins , Zebrafish , Animals , Humans , Gene Frequency , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Phenotype , Proteins/genetics , Zebrafish/genetics
4.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Article En | MEDLINE | ID: mdl-34930816

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Argonaute Proteins , Intellectual Disability , Neurodevelopmental Disorders , Humans , Amino Acids/genetics , Heterozygote , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , RNA, Messenger , Argonaute Proteins/genetics
5.
Am J Med Genet A ; 185(11): 3446-3458, 2021 11.
Article En | MEDLINE | ID: mdl-34436830

The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution occurring with age. We report familial ASXL3 pathogenic variants, characterize the phenotype in mildly affected individuals and discuss nonpenetrance. We also discuss the role of missense variants in ASXL3. We delineate a variable but consistent phenotype. The most characteristic features are neurodevelopmental delay with consistently limited speech, significant neuro-behavioral issues, hypotonia, and feeding difficulties. Distinctive features include downslanting palpebral fissures, hypertelorism, tubular nose with a prominent nasal bridge, and low-hanging columella. The presented data will inform clinical management of individuals with ASXL3-related syndrome and improve interpretation of new ASXL3 sequence variants.


Developmental Disabilities/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/epidemiology , Developmental Disabilities/physiopathology , Female , Genetic Variation/genetics , Humans , Hypertelorism/genetics , Hypertelorism/physiopathology , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Muscle Hypotonia/genetics , Muscle Hypotonia/physiopathology , Mutation/genetics , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
6.
Genet Med ; 23(5): 888-899, 2021 05.
Article En | MEDLINE | ID: mdl-33597769

PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.


Autism Spectrum Disorder , Brain Diseases , Intellectual Disability , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Brain , Disks Large Homolog 4 Protein/genetics , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype
7.
8.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Article En | MEDLINE | ID: mdl-32891193

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


DNA-Binding Proteins/genetics , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/genetics , Urinary Tract/metabolism , Urogenital Abnormalities/genetics , Amphibian Proteins/antagonists & inhibitors , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Case-Control Studies , Child , Child, Preschool , DNA-Binding Proteins/metabolism , Family , Female , Forkhead Transcription Factors/metabolism , Heterozygote , Humans , Infant , Larva/genetics , Larva/growth & development , Larva/metabolism , Male , Mice , Mice, Knockout , Morpholinos/genetics , Morpholinos/metabolism , Pedigree , Protein Binding , Repressor Proteins/metabolism , Transcription Factors/metabolism , Urinary Tract/abnormalities , Urogenital Abnormalities/metabolism , Urogenital Abnormalities/pathology , Exome Sequencing , Xenopus
9.
Am J Hum Genet ; 106(5): 587-595, 2020 05 07.
Article En | MEDLINE | ID: mdl-32359473

Despite evidence that deleterious variants in the same genes are implicated across multiple neurodevelopmental and neuropsychiatric disorders, there has been considerable interest in identifying genes that, when mutated, confer risk that is largely specific for autism spectrum disorder (ASD). Here, we review the findings and limitations of recent efforts to identify relatively "autism-specific" genes, efforts which focus on rare variants of large effect size that are thought to account for the observed phenotypes. We present a divergent interpretation of published evidence; discuss practical and theoretical issues related to studying the relationships between rare, large-effect deleterious variants and neurodevelopmental phenotypes; and describe potential future directions of this research. We argue that there is currently insufficient evidence to establish meaningful ASD specificity of any genes based on large-effect rare-variant data.


Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Uncertainty , Cohort Studies , Genetic Testing , Genotype , Humans , Reproducibility of Results
11.
Genet Med ; 22(5): 878-888, 2020 05.
Article En | MEDLINE | ID: mdl-31949314

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Child , Female , GATA Transcription Factors/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Nucleosomes , Phenotype , Pregnancy , Repressor Proteins
12.
Hum Mutat ; 39(11): 1660-1667, 2018 11.
Article En | MEDLINE | ID: mdl-30311381

With the increasing use of clinical genomic testing across broad medical disciplines, the need for data sharing and curation efforts to improve variant interpretation is paramount. The National Center for Biotechnology Information (NCBI) ClinVar database facilitates these efforts by serving as a repository for clinical assertions about genomic variants and associations with disease. Most variant submissions are from clinical laboratories, which may lack clinical details. Laboratories may also choose not to submit all variants. Clinical providers can contribute to variant interpretation improvements by submitting variants to ClinVar with their own assertions and supporting evidence. The medical genetics team at Geisinger's Autism & Developmental Medicine Institute routinely reviews the clinical significance of all variants obtained through clinical genomic testing, using published ACMG/AMP guidelines, clinical correlation, and post-test clinical data. We describe the submission of 148 sequence and 155 copy number variants to ClinVar as "provider interpretations." Of these, 192 (63.4%) were novel to ClinVar. Detailed clinical data were provided for 298 (98.3%), and when available, segregation data and follow-up clinical correlation or testing was included. This contribution marks the first large-scale submission from a neurodevelopmental clinical setting and illustrates the importance of clinical providers in collaborative efforts to improve variant interpretation.


Genome, Human/genetics , Autism Spectrum Disorder , Databases, Genetic , Genetic Testing , Genetic Variation/genetics , Genomics , Humans
15.
JAMA Psychiatry ; 72(2): 119-26, 2015 Feb.
Article En | MEDLINE | ID: mdl-25493922

IMPORTANCE: Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood. OBJECTIVES: To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs. DESIGN, SETTING, AND PARTICIPANTS: Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project. MAIN OUTCOMES AND MEASURES: We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison. RESULTS: A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were -1.7 SD for cognitive ability, 2.2 SD for social behavior, and -1.3 SD for neuromotor performance (P < .001). Despite large deleterious effects, significant positive correlations between parents and probands were preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body mass index of probands compared with siblings, with an intraclass correlation of 0.40 (P = .07). CONCLUSIONS AND RELEVANCE: Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children's developmental and psychiatric prognoses. Use of biparental mean scores rather than general population mean scores may be more relevant to examine the effect of a mutation or any other cause of trait variation on a neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment for developmental disorders.


Autistic Disorder/physiopathology , Chromosome Disorders/physiopathology , Intellectual Disability/physiopathology , Intelligence/genetics , Parents , Phenotype , Psychomotor Performance/physiology , Social Behavior , Adult , Autistic Disorder/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 16/genetics , DNA Copy Number Variations/genetics , Female , Humans , Intellectual Disability/genetics , Male , Siblings
16.
Lancet Neurol ; 12(4): 406-14, 2013 Apr.
Article En | MEDLINE | ID: mdl-23518333

Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population.


Brain Diseases/diagnosis , Brain Diseases/genetics , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetic Predisposition to Disease , Animals , Autistic Disorder/diagnosis , Autistic Disorder/epidemiology , Autistic Disorder/genetics , Brain Diseases/epidemiology , Developmental Disabilities/epidemiology , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/epidemiology , Nervous System Diseases/genetics
19.
J Autism Dev Disord ; 33(2): 187-92, 2003 Apr.
Article En | MEDLINE | ID: mdl-12757358

Little information is available regarding the yield of the medical evaluation of children diagnosed with pervasive developmental disorder-not otherwise specified (PDD-NOS) compared to children diagnosed with autistic disorder. Medical records were reviewed for 182 patients less than 18 years of age with either PDD-NOS or autistic disorder evaluated between 1994 and 1998 at Mayo Clinic. A condition likely to be etiologically relevant was identified in 6/117 (5.1%) patients diagnosed with PDD-NOS and 2/65 (3.1%) patients diagnosed with autistic disorder. Genetic disorders, both chromosomal and single-gene, were the most commonly identified conditions. Seizure disorders, electroencephalogram abnormalities, and anomalies on brain imaging were common in both groups. The likelihood of uncovering an etiologically relevant condition in children diagnosed with either PDD-NOS or autistic disorder may be equivalent. The scope of the etiological search in an individual patient with an autistic spectrum disorder should not be limited by the specific diagnostic category.


Autistic Disorder/etiology , Child Development Disorders, Pervasive/etiology , Patient Care Team , Adolescent , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Autistic Disorder/psychology , Brain Damage, Chronic/complications , Brain Damage, Chronic/diagnosis , Brain Damage, Chronic/genetics , Child , Child Development Disorders, Pervasive/diagnosis , Child Development Disorders, Pervasive/genetics , Child Development Disorders, Pervasive/psychology , Child, Preschool , Chromosome Disorders/complications , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Diagnosis, Differential , Female , Genetic Counseling , Humans , Infant , Male , Prognosis , Risk Factors
...