Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(8): 2845-2853, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37439828

RESUMEN

Electrical doping of metal halide perovskites (MPHs) is a key step towards the use of this efficient and cost-effective semiconductor class in modern electronics. In this work, we demonstrate n-type doping of methylammonium lead iodide (CH3NH3PbI3) by the post-fabrication introduction of Sm2+. The ionic radius of the latter is similar to that of Pb2+ and can replace it without altering the perovskite crystal lattice. It is demonstrated that once incorporated, Sm2+ can act as a dopant by undergoing oxidation to Sm3+. This results in the release of a negative charge that n-dopes the material, resulting in an increase of conductivity of almost 3 orders of magnitude. Unlike substitution doping with heterovalent ions, furtive dopants do not require counterions to maintain charge neutrality with respect to the ions they replace and are thus more likely to be incorporated into the crystalline structure. The incorporation of the dopant throughout the material is evidenced by XPS and ToF-SIMS, while the XRD pattern shows no phase separation at low and medium doping concentrations. A shift of the Fermi level towards a conduction energy of 0.52 eV confirms the doping to be n-type with a charge carrier density, calculated using the Mott-Schottky method, estimated to be nearly 1017 cm-3 for the most conductive samples. Variable-temperature conductivity experiments show that the dopant is only partially ionized at room temperature due to dopant freeze-out.

2.
Nanoscale ; 15(13): 6126-6142, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36939532

RESUMEN

We report, for the first time, sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics. Low energy scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDX) mapping has revealed the internal morphology of organic semiconductor donor : acceptor blend nanoparticles at the sub-4 nm level. A unique element was available for utilisation as a fingerprint element to differentiate donor from acceptor material in each blend system. Si was used to map the location of donor polymer PTzBI-Si in PTzBI-Si:N2200 nanoparticles, and S (in addition to N) was used to map donor polymer TQ1 in TQ1:PC71BM nanoparticles. For select material blends, synchrotron-based scanning transmission X-ray microscopy (STXM), was demonstrated to remain as the superior chemical contrast technique for mapping organic donor : acceptor morphology, including for material combinations lacking a unique fingerprint element (e.g. PTQ10:Y6), or systems where the unique element is in a terminal functional group (unsaturated, dangling bonds) and can hence be easily damaged under the electron beam, e.g. F on PTQ10 donor polymer in the PTQ10:IDIC donor : acceptor blend. We provide both qualitative and quantitative compositional mapping of organic semiconductor nanoparticles with STEM EDX, with sub-domains resolved in nanoparticles as small as 30 nm in diameter. The sub-4 nm mapping technology reported here shows great promise for the optimisation of organic semiconductor blends for applications in organic electronics (solar cells and bioelectronics) and photocatalysis, and has further applications in organic core-shell nanomedicines.

3.
ACS Nano ; 15(3): 3927-3959, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620200

RESUMEN

Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, this review has been prepared to provide a timely roadmap of the formation and application of aqueous nanoparticle dispersions of active layer components for OPV. We provide a thorough synopsis of recent developments in both nanoprecipitation and miniemulsion for preparing photovoltaic inks, facilitating readers in acquiring a deep understanding of the crucial synthesis parameters affecting particle size, colloidal concentration, ink stability, and more. This review also showcases the experimental levers for identifying and optimizing the internal donor-acceptor morphology of the nanoparticles, featuring cutting-edge X-ray spectromicroscopy measurements reported over the past decade. The different strategies to improve the incorporation of these inks into OPV devices and to increase their efficiency (to the current record of 7.5%) are reported, in addition to critical design choices of surfactant type and the advantages of single-component vs binary nanoparticle populations. The review naturally culminates by presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.

4.
Sci Technol Adv Mater ; 19(1): 336-369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29707072

RESUMEN

Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

5.
ACS Appl Mater Interfaces ; 9(39): 34131-34138, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28945342

RESUMEN

Understanding the degradation mechanisms in organic photovoltaics is crucial in order to develop stable organic semiconductors and robust device architectures. The rapid loss of efficiency, referred to as burn-in, is a major issue to be addressed. This study reports on the influence of the electron transport layer (ETLs) and UV light on the drop of open-circuit voltage (Voc) for P3HT:PC60BM-based devices. The results show that Voc loss is induced by the UV and, more importantly, that the ETL can amplify it, with TiOx yielding a stronger drop than ZnO. Using impedance spectroscopy (IS) and X-ray photoelectron spectroscopy (XPS), different degradation mechanisms were identified according to whether the ETL is TiOx or ZnO. For TiOx-based devices, the formation of an interface dipole was identified, resulting in a loss of the flat-band potential (Vfb) and, thus, of the Voc. For ZnO-based devices, chemical modifications of the metal oxide and active layer at the interface were detected, resulting in a doping of the active layer which impacts the Voc. This study highlights the role of the architecture and, more specifically, of the ETL in the severity of burn-in and degradation pathways.

6.
ACS Appl Mater Interfaces ; 7(45): 25334-40, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26540482

RESUMEN

For efficient organic photovoltaic (OPV) solar cells, a low work function electrode is necessary to enhance the built-in voltage of the active layer, thereby improving the overall efficiency. Calcium is often used for this purpose in the laboratory; however, its development on a larger scale is impaired by its high reactivity with oxygen and water and the resulting low stability of solar cells under operation. The influence of a novel interlayer, lanthanum hexaboride (LaB6), on the electronic properties of OPV is studied in this work. Similarly to calcium, when LaB6 is used as an interlayer, it enhances the built-in voltage in the device, leading to a higher fill factor (FF) and optimal open circuit voltage (V(oc)). As a result, optimized LaB6-based devices present significantly improved power conversion efficiencies. More importantly, while calcium/aluminum (Ca/Al) and aluminum (Al) cathodes lose their capacity to enhance the internal electrical field during thermal aging, the LaB6/aluminum (LaB6/Al) electrode remains stable. This remarkable effect results in a highly stable V(oc) and flat-band potential during aging.

7.
ACS Appl Mater Interfaces ; 7(44): 24663-9, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26479086

RESUMEN

In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PEDOT: PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

8.
Chem Commun (Camb) ; 51(6): 1008-11, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25364796

RESUMEN

We report for the first time the use of a microfluidic supercritical antisolvent process (µSAS) to synthesize semiconducting polymer nanoparticles (NPs) of poly(3-hexylthiophene) (P3HT). Solvent-free P3HT NPs with average diameters as small as 36 ± 8 nm are obtained. They are continuously spray-coated on substrates to fabricate OFET devices, demonstrating hole mobility through the nanoparticle film equivalent to that of conventional spin-coated P3HT.

9.
Adv Mater ; 26(33): 5831-8, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25042898

RESUMEN

A novel stable bisazide molecule that can freeze the bulk heterojunction morphology at its optimized layout by specifically bonding to fullerenes is reported. The concept is demonstrated with various polymers: fullerene derivatives systems enable highly thermally stable polymer solar cells.

10.
Chem Commun (Camb) ; 49(34): 3555-7, 2013 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-23525281

RESUMEN

2'-Hydroxychalcone derivatives featuring a triphenylamine terminal unit were synthesized in one step and behaved as effective ligands for borondifluoride coordination, enabling the straightforward generation of D-A molecules with strong absorption. Solution-processed solar cells based on these complexes and PC(61)BM showed a PCE of 1.13%.

11.
Adv Mater ; 24(16): 2196-201, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22447735

RESUMEN

The addition of a block copolymer to the polymer/fullerene blend is a novel approach to the fabrication of organic solar cells. The block copolymer (P3HT-b-P4VP) is used as nanostructuring agent in the active layer. A significant enhancement of the cell efficiency is observed, in correlation with morphology control, both before (as-cast) and after the annealing process.


Asunto(s)
Suministros de Energía Eléctrica , Nanoestructuras/química , Compuestos Orgánicos/química , Polímeros/química , Energía Solar , Temperatura
12.
Magn Reson Chem ; 49(5): 242-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21491481

RESUMEN

PCBM or [6,6]-phenyl-C(61)-butyric acid methyl ester is nowadays still one of the most successful electron acceptors for plastic bulk heterojunction (BHJ) photovoltaic devices. In this study, a set of complementary techniques, i.e. solid-state NMR, XRD and DSC, is proposed as a fast and sensitive tool to screen the morphology of PCBM specimens with different preparation histories. Based on proton NMR relaxation decay time values, an interval can be derived that situates the average crystal dimensions and which can further be refined on the basis of XRD patterns and DSC thermograms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...