Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2346694, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739481

RESUMEN

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.


Asunto(s)
Blastocisto , Epigénesis Genética , MicroARNs , Espermatozoides , Estrés Psicológico , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Animales , Espermatozoides/metabolismo , Femenino , Ratones , Blastocisto/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/genética , Humanos , Ratones Endogámicos C57BL
2.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37786715

RESUMEN

Chronically stressing male mice can alter the behavior of their offspring across generations. This effect is thought to be mediated by stress-induced changes in the content of specific sperm miRNAs that modify embryo development after their delivery to oocytes at fertilization. A major problem with this hypothesis is that the levels of mouse sperm miRNAs are much lower than those present in preimplantation embryos. This makes it unclear how embryos could be significantly impacted without an amplification system to magnify changes in sperm miRNA content, like those present in lower organisms where transgenerational epigenetic inheritance is well established. Here, we describe such a system for Chronic Social Instability (CSI) stress that can explain how it reduces the levels of the miR-34b,c/449a,b family of miRNAs not only in sperm of exposed males but also in preimplantation embryos ( PIEs ) derived from their mating, as well as in sperm of male offspring. Sperm-derived miR-34c normally positively regulates expression of its own gene and that of miR-449 in PIEs. This feed forward, auto-amplification process is suppressed when CSI stress reduces sperm miR-34c levels. Its suppression is important for the transmission of traits to offspring because restoring miR-34c levels in PIEs from CSI stressed males, which also restores levels of miR-449 in them, suppresses elements of elevated anxiety and defective sociability normally found specifically in their female offspring, as well as reduced sperm miR-34 and miR-449 levels normally found in male offspring, who pass on these traits to their offspring. We previously published that the content of sperm miR-34/449 is also reduced in men raised in highly abusive and/or dysfunctional families. We show here that a similar miRNA auto-amplification system functions in human embryonic stem cells. This raises the possibility that PIEs in offspring of these men also display reduced levels of miR-34/449, enhancing the potential translational significance of these studies.

3.
Methods Mol Biol ; 2198: 255-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32822037

RESUMEN

Male infertility is associated with several causes affecting the paternal nucleus such as DNA lesions (breaks, deletions, mutations, ...) or numerical chromosome anomalies. More recently, male infertility has also been associated with changes in the sperm epigenome, including modification in the topology of chromatin (Olszewska et al., Chromosome Research 16:875-890, 2008; Alladin et al., Syst Biol Reprod Med 59: 146-152, 2013) ref with number 1, 2. Indeed, the positioning of chromosomes in the sperm nucleus is nonrandom and defines chromosome territories (Champroux et al., Genes (Basel) 9:501, 2018) ref with number 3 whose optimal organization determines the success of embryonic development. In this context, the study of the spatial distribution of chromosomes in sperm cells could be relevant for clinical diagnosis. We describe here a in situ fluorescence hybridization (FISH) strategy coupled with a fluorescent immunocytochemistry approach followed by confocal analysis and reconstruction (2D/3D) as a powerful tool to analyze the location of chromosomes in the sperm nucleus using the mouse sperm as a model. Already, the two-dimensional (2D) analysis of FISH and immunofluorescence data reveal the location of chromosomes as well as the different markings on the spermatic nucleus. In addition, a good 3D rendering after Imaris software processing was obtained when Z-stacks of images were acquired over a defined volume (10 µm × 13 µm × 15 µm) with a sequential scanning mode to minimize bleed-through effects and avoid overlapping wavelengths.


Asunto(s)
Posicionamiento de Cromosoma/inmunología , Microscopía Confocal/métodos , Espermatozoides/inmunología , Aneuploidia , Animales , Núcleo Celular/inmunología , Cromatina , Aberraciones Cromosómicas , Posicionamiento de Cromosoma/genética , Cromosomas/inmunología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , Infertilidad Masculina/inmunología , Masculino , Ratones , Espermatozoides/citología
4.
Asian J Androl ; 22(6): 590-601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32270769

RESUMEN

The mammalian epididymis not only plays a fundamental role in the maturation of spermatozoa, but also provides protection against various stressors. The foremost among these is the threat posed by oxidative stress, which arises from an imbalance in reactive oxygen species and can elicit damage to cellular lipids, proteins, and nucleic acids. In mice, the risk of oxidative damage to spermatozoa is mitigated through the expression and secretion of glutathione peroxidase 5 (GPX5) as a major luminal scavenger in the proximal caput epididymidal segment. Accordingly, the loss of GPX5-mediated protection leads to impaired DNA integrity in the spermatozoa of aged Gpx5-/- mice. To explore the underlying mechanism, we have conducted transcriptomic analysis of caput epididymidal epithelial cells from aged (13 months old) Gpx5-/- mice. This analysis revealed the dysregulation of several thousand epididymal mRNA transcripts, including the downregulation of a subgroup of piRNA pathway genes, in aged Gpx5-/- mice. In agreement with these findings, we also observed the loss of piRNAs, which potentially bind to the P-element-induced wimpy testis (PIWI)-like proteins PIWIL1 and PIWIL2. The absence of these piRNAs was correlated with the elevated mRNA levels of their putative gene targets in the caput epididymidis of Gpx5-/- mice. Importantly, the oxidative stress response genes tend to have more targeting piRNAs, and many of them were among the top increased genes upon the loss of GPX5. Taken together, our findings suggest the existence of a previously uncharacterized somatic piRNA pathway in the mammalian epididymis and its possible involvement in the aging and oxidative stress-mediated responses.


Asunto(s)
Epidídimo/metabolismo , Glutatión Peroxidasa/fisiología , ARN Interferente Pequeño/metabolismo , Envejecimiento/metabolismo , Animales , Regulación hacia Abajo , Epidídimo/enzimología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Glutatión Peroxidasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Genes (Basel) ; 9(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336622

RESUMEN

Recent studies have revealed a well-defined higher order of chromosome architecture, named chromosome territories, in the human sperm nuclei. The purpose of this work was, first, to investigate the topology of a selected number of chromosomes in murine sperm; second, to evaluate whether sperm DNA damage has any consequence on chromosome architecture. Using fluorescence in situ hybridization, confocal microscopy, and 3D-reconstruction approaches we demonstrate that chromosome positioning in the mouse sperm nucleus is not random. Some chromosomes tend to occupy preferentially discrete positions, while others, such as chromosome 2 in the mouse sperm nucleus are less defined. Using a mouse transgenic model (Gpx5-/-) of sperm nuclear oxidation, we show that oxidative DNA damage does not disrupt chromosome organization. However, when looking at specific nuclear 3D-parameters, we observed that they were significantly affected in the transgenic sperm, compared to the wild-type. Mild reductive DNA challenge confirmed the fragility of the organization of the oxidized sperm nucleus, which may have unforeseen consequences during post-fertilization events. These data suggest that in addition to the sperm DNA fragmentation, which is already known to modify sperm nucleus organization, the more frequent and, to date, the less highly-regarded phenomenon of sperm DNA oxidation also affects sperm chromatin packaging.

6.
Front Cell Dev Biol ; 6: 50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868581

RESUMEN

The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.

7.
Free Radic Biol Med ; 89: 993-1002, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26510519

RESUMEN

Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.


Asunto(s)
Núcleo Celular/genética , Cromosomas/genética , Daño del ADN , Estrés Oxidativo/genética , Elementos de Nucleótido Esparcido Corto/genética , Espermatozoides/patología , Animales , Inmunoprecipitación , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...