Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 156: 142-150, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30296707

RESUMEN

The biosynthesis of two polyketides, atranorin and fumarprotocetraric acid, produced from a lichen-forming fungus, Cladonia rangiferina (L.) F. H. Wigg. was correlated with the expression of eight fungal genes (CrPKS1, CrPKS3, CrPKS16, Catalase (CAT), Sugar Transporter (MFsug), Dioxygenase (YQE1), C2H2 Transcription factor (C2H2), Transcription Factor PacC (PacC), which are thought to be involved in polyketide biosynthesis, and one algal gene, NAD-dependent deacetylase sirtuin 2 (AsNAD)), using laser microdissection (LMD). The differential gene expression levels within the thallus tissue layers demonstrate that the most active region for potential polyketide biosynthesis within the lichen is the outer apical region proximal to the photobiont but some expression also occurs in reproductive tissue. This is the first study using laser microdissection to explore gene expression of these nine genes and their location of expression; it provides a proof-of-concept for future experiments exploring tissue-specific gene expression within lichens; and it highlights the utility of LMD for use in lichen systems.


Asunto(s)
Ascomicetos/enzimología , Rayos Láser , Líquenes/microbiología , Microdisección , Sintasas Poliquetidas/química , Ascomicetos/metabolismo , Líquenes/genética , Líquenes/metabolismo , Estructura Molecular , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
2.
Plant J ; 90(3): 573-586, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28222234

RESUMEN

The hemibiotrophic fungal pathogen Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus (canola, oilseed rape) and causes significant loss of yield worldwide. While genetic resistance has been used to mitigate the disease by means of traditional breeding strategies, there is little knowledge about the genes that contribute to blackleg resistance. RNA sequencing and a streamlined bioinformatics pipeline identified unique genes and plant defense pathways specific to plant resistance in the B. napus-L. maculans LepR1-AvrLepR1 interaction over time. We complemented our temporal analyses by monitoring gene activity directly at the infection site using laser microdissection coupled to quantitative PCR. Finally, we characterized genes involved in plant resistance to blackleg in the Arabidopsis-L. maculans model pathosystem. Data reveal an accelerated activation of the plant transcriptome in resistant host cotyledons associated with transcripts coding for extracellular receptors and phytohormone signaling molecules. Functional characterization provides direct support for transcriptome data and positively identifies resistance regulators in the Brassicaceae. Spatial gradients of gene activity were identified in response to L. maculans proximal to the site of infection. This dataset provides unprecedented spatial and temporal resolution of the genes required for blackleg resistance and serves as a valuable resource for those interested in host-pathogen interactions.


Asunto(s)
Ascomicetos/patogenicidad , Brassica napus/metabolismo , Brassica napus/microbiología , Enfermedades de las Plantas/inmunología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa , Sitios de Carácter Cuantitativo/genética
3.
J Exp Bot ; 67(11): 3561-71, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27194740

RESUMEN

The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/genética , Transcripción Genética , Captura por Microdisección con Láser , Óvulo Vegetal/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ARN
4.
Plant Sci ; 241: 45-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26706057

RESUMEN

The chalazal seed coat (CZSC) is a maternal subregion adjacent to the funiculus which serves as the first point of entry into the developing seed. This subregion is of particular interest in Brassica napus (canola) because of its location within the seed and its putative contribution to seed filling processes. In this study, the CZSC of canola was characterized at an anatomical and molecular level to (i) describe the cellular and subcellular features of the CZSC throughout seed development, (ii) reveal cellular features of the CZSC that relate to transport processes, (iii) study gene activity of transporters and transcriptional regulators in the CZSC subregion over developmental time, and (iv) briefly investigate the contribution of the A and C constituent genomes to B. napus CZSC gene activity. We found that the CZSC contains terminating ends of xylem and phloem as well as a mosaic of endomembrane and plasmodesmatal connections, suggesting that this subregion is likely involved in the transport of material and information from the maternal tissues of the plant to other regions of the seed. Laser microdissection coupled with quantitative RT-PCR identified the relative abundance of sugar, water, auxin and amino acid transporter homologs inherited from the constituent genomes of this complex polyploid. We also studied the expression of three transcription factors that were shown to co-express with these biological processes providing a preliminary framework for the regulatory networks responsible for seed filling in canola and discuss the relationship of the CZSC to other regions and subregions of the seed and its role in seed development.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Transporte Biológico , Brassica napus/anatomía & histología , Brassica napus/genética , Brassica napus/ultraestructura , Captura por Microdisección con Láser , Microscopía Electrónica de Transmisión , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant J ; 82(1): 41-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25684030

RESUMEN

The funiculus anchors the structurally complex seed to the maternal plant, and is the only direct route of transport for nutrients and maternal signals to the seed. While our understanding of seed development is becoming clearer, current understanding of the genetics and cellular mechanisms that contribute to funiculus development is limited. Using laser microdissection combined with global RNA-profiling experiments we compared the genetic profiles of all maternal and zygotic regions and subregions during seed development. We found that the funiculus is a dynamic region of the seed that is enriched for mRNAs associated with hormone metabolism, molecular transport, and metabolic activities corresponding to biological processes that have yet to be described in this maternal seed structure. We complemented our genetic data with a complete histological analysis of the funiculus from the earliest stages of development through to seed maturation at the light and electron microscopy levels. The anatomy revealed signs of photosynthesis, the endomembrane system, cellular respiration, and transport within the funiculus, all of which supported data from the transcriptional analysis. Finally, we studied the transcriptional programming of the funiculus compared to other seed subregions throughout seed development. Using newly designed in silico algorithms, we identified a number of transcriptional networks hypothesized to be responsible for biological processes like auxin response and glucosinolate biosynthesis found specifically within the funiculus. Taken together, patterns of gene activity and histological observations reveal putative functions of the understudied funiculus region and identify predictive transcriptional circuits underlying these biological processes in space and time.


Asunto(s)
Arabidopsis/genética , Semillas/genética , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glucosinolatos/metabolismo , Ácidos Indolacéticos/metabolismo , Captura por Microdisección con Láser , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo
6.
J Exp Bot ; 65(20): 5903-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151615

RESUMEN

Changes in the endogenous ascorbate redox status through genetic manipulation of cellular ascorbate levels were shown to accelerate cell proliferation during the induction phase and improve maturation of somatic embryos in Arabidopsis. Mutants defective in ascorbate biosynthesis such as vtc2-5 contained ~70 % less cellular ascorbate compared with their wild-type (WT; Columbia-0) counterparts. Depletion of cellular ascorbate accelerated cell division processes and cellular reorganization and improved the number and quality of mature somatic embryos grown in culture by 6-fold compared with WT tissues. To gain insight into the molecular mechanisms underlying somatic embryogenesis (SE), we profiled dynamic changes in the transcriptome and analysed dominant patterns of gene activity in the WT and vtc2-5 lines across the somatic embryo culturing process. Our results provide insight into the gene regulatory networks controlling SE in Arabidopsis based on the association of transcription factors with DNA sequence motifs enriched in biological processes of large co-expressed gene sets. These data provide the first detailed account of temporal changes in the somatic embryo transcriptome starting with the zygotic embryo, through tissue dedifferentiation, and ending with the mature somatic embryo, and impart insight into possible mechanisms for the improved culture of somatic embryos in the vtc2-5 mutant line.


Asunto(s)
Arabidopsis/genética , Ácido Ascórbico/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Embriogénesis Somática de Plantas/métodos , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Mutación , Oxidación-Reducción , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología
7.
Plant Sci ; 223: 146-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24767124

RESUMEN

Filling, protection, and dispersal of angiosperm seeds are largely dependent on the development of the maternally derived seed coat. The development of the seed coat in plants such as Arabidopsis thaliana and Glycine max (soybean) is regulated by a complex network of genes and gene products responsible for the establishment and identity of this multicellular structure. Recent studies support the hypothesis that the structure, development, and function of the seed coat are under the control of transcriptional regulators that are specified in space and time. Furthermore, these transcriptional regulators can act in combination to orchestrate the expression of large gene sets. We discuss the underlying transcriptional circuits of the seed coat sub-regions through the interrogation of large-scale datasets, and also provide some ideas on how the identification and analysis of these datasets can be further improved in these two model oilseed systems.


Asunto(s)
Redes Reguladoras de Genes/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Transcripción Genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/crecimiento & desarrollo
8.
Plant Sci ; 213: 88-97, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24157211

RESUMEN

Plants must protect themselves from a spectrum of abiotic stresses. For example, the sun is a source of heat, intense light, and DNA-damaging ultraviolet (UV) rays. Damaged DNA binding protein 1A (DDB1A), DDB2, and UV hypersensitive 6 (UVH6)/XPD are all involved in the repair of UV-damaged DNA - DDB1A and DDB2 in the initial damage recognition stage, while the UVH6/XPD helicase unwinds the damaged strand. We find that, as predicted, Arabidopsis ddb1a and ddb2 mutants do not affect uvh6/xpd UV tolerance. In addition, uvh6 is heat sensitive, and ddb1a and ddb2 weakly enhance this trait. The uvh6 ddb1a and uvh6 ddb2 double mutants also exhibit sensitivity to oxidative stress, suggesting a role for DDB1 complexes in heat and oxidative stress tolerance. Finally, we describe a new uvh6 phenotype, the low penetrance production of flowers with five petals and five sepals. ddb1a and ddb2 suppress this phenotype in uvh6 mutants. Interestingly, heat treatment also induces five-petalled flowers in the ddb1a and ddb2 single mutants. Thus UVH6, DDB1A, and DDB2 all contribute to UV tolerance, heat tolerance and floral patterning.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Daño del ADN , ADN de Plantas/genética , Proteínas de Unión al ADN/metabolismo , Flores/efectos de los fármacos , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Calor , Peróxido de Hidrógeno/farmacología , Meristema/efectos de los fármacos , Meristema/genética , Meristema/fisiología , Meristema/efectos de la radiación , Mutación , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Brotes de la Planta/efectos de la radiación , Estrés Fisiológico , Factores de Transcripción/metabolismo , Rayos Ultravioleta
9.
Planta ; 237(4): 1065-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23242073

RESUMEN

Altered expression of Brassica napus (Bn) SHOOTMERISTEMLESS (STM) affects the morphology and behaviour of microspore-derived embryos (MDEs). While down-regulation of BnSTM repressed the formation of the shoot meristem (SAM) and reduced the number of Brassica MDEs able to regenerate viable plants at germination, over-expression of BnSTM enhanced the structure of the SAM and improved regeneration frequency. Within dissected SAMs, the induction of BnSTM up-regulated the expression of many transcription factors (TFs) some of which directly involved in the formation of the meristem, i.e. CUP-SHAPED COTYLEDON1 and WUSCHEL, and regulatory components of the antioxidant response, hormone signalling, and cell wall synthesis and modification. Opposite expression patterns for some of these genes were observed in the SAMs of MDEs down-regulating BnSTM. Altered expression of BnSTM affected transcription of cell wall and lignin biosynthetic genes. The expression of PHENYLALANINE AMMONIA LYASE2, CINNAMATE 4-4HYDROXYLASE, and CINNAMYL ALCOHOL DEHYDROGENASE were repressed in SAMs over-expressing BnSTM. Since lignin formation is a feature of irreversible cell differentiation, these results suggest that one way in which BnSTM promotes indeterminate cell fate may be by preventing the expression of components of biochemical pathways involved in the accumulation of lignin in the meristematic cells. Overall, these studies provide evidence for a novel function of BnSTM in enhancing the quality of in vitro produced meristems, and propose that this gene can be used as a potential target to improve regeneration of cultured embryos.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassica napus/metabolismo , Proteínas de Homeodominio/metabolismo , Meristema/metabolismo , Brassica napus/embriología , Brassica napus/ultraestructura , Pared Celular/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Lignina/biosíntesis , Meristema/ultraestructura
10.
J Exp Bot ; 63(12): 4447-61, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22563121

RESUMEN

SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Adenosina Difosfato/análisis , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Transporte Biológico , Brassica napus/química , Brassica napus/metabolismo , Regulación hacia Abajo/genética , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Expresión Génica , Glucosinolatos/análisis , Glucólisis , Meristema/genética , Meristema/metabolismo , Aceites de Plantas/análisis , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/química , Semillas/genética , Semillas/metabolismo , Sacarosa/análisis , Sacarosa/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...