Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 883: 215-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26621470

RESUMEN

Protein folding and structure have been of interest since the dawn of protein chemistry. Following translation from the ribosome, a protein must go through various steps to become a functional member of the cellular society. Every protein has a unique function in the cell and is classified on this basis. Proteins that are involved in cellular respiration are the bioenergetic workhorses of the cell. Bacteria are resilient organisms that can survive in diverse environments by fine tuning these workhorses. One class of proteins that allow survival under anoxic conditions are anaerobic respiratory oxidoreductases, which utilize many different compounds other than oxygen as its final electron acceptor. Dimethyl sulfoxide (DMSO) is one such compound. Respiration using DMSO as a final electron acceptor is performed by DMSO reductase, converting it to dimethyl sulfide in the process. Microbial respiration using DMSO is reviewed in detail by McCrindle et al. (Adv Microb Physiol 50:147-198, 2005). In this chapter, we discuss the biogenesis of DMSO reductase as an example of the participant network for complex iron-sulfur molybdoenzyme maturation pathways.


Asunto(s)
Escherichia coli/enzimología , Proteínas Hierro-Azufre/biosíntesis , Oxidorreductasas/biosíntesis , Pliegue de Proteína , Proteínas Hierro-Azufre/química , Oxidorreductasas/química
2.
BMC Evol Biol ; 15: 110, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26067063

RESUMEN

BACKGROUND: Redox enzyme maturation proteins (REMPs) describe a diverse family of prokaryotic chaperones involved in the biogenesis of anaerobic complex iron sulfur molybdoenzyme (CISM) respiratory systems. Many REMP family studies have focused on NarJ subfamily members from Escherichia coli: NarJ, NarW, DmsD, TorD and YcdY. The aim of this bioinformatics study was to expand upon the evolution, distribution and genetic association of these 5 REMP members within 130 genome sequenced taxonomically diverse species representing 324 Prokaryotic sequences. NarJ subfamily member diversity was examined at the phylum-species level and at the amino acid/nucleotide level to determine how close their genetic associations were between their respective CISM systems within phyla. RESULTS: This study revealed that NarJ members possessed unique motifs that distinguished Gram-negative from Gram-positive/Archaeal species and identified a strict genetic association with its nitrate reductase complex (narGHI) operon compared to all other members. NarW appears to be found specifically in Gammaproteobacteria. DmsD also showed close associations with the dimethylsulfoxide reductase (dmsABC) operon compared to TorD. Phylogenetic analysis revealed that YcdY has recently evolved from DmsD and that YcdY has likely diverged into 2 subfamilies linked to Zn- dependent alkaline phosphatase (ycdX) operons and a newly identified operon containing part of Zn-metallopeptidase FtsH complex component (hflC) and NADH-quinone dehydrogenase (mdaB). TorD demonstrated the greatest diversity in operon association. TorD was identifed within operons from either trimethylamine-N-oxide reductase (torAC) or formate dehydrogenase (fdhGHI), where each type of TorD had a unique motif. Additionally a subgroup of dmsD and torD members were also linked to operons with biotin sulfoxide (bisC) and polysulfide reductase (nrfD) indicating a potential role in the maturation of diverse CISM. CONCLUSION: Examination of diverse prokaryotic NarJ subfamily members demonstrates that the evolution and genetic association of each member is uniquely biased by its CISM operon association.


Asunto(s)
Anaerobiosis , Archaea/enzimología , Archaea/genética , Bacterias/enzimología , Bacterias/genética , Evolución Molecular , Chaperonas Moleculares/genética , Secuencias de Aminoácidos , Archaea/metabolismo , Bacterias/metabolismo , Chaperonas Moleculares/química , Operón , Filogenia , Estructura Terciaria de Proteína , Selección Genética
3.
Biochem Biophys Res Commun ; 456(4): 841-6, 2015 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-25522883

RESUMEN

DmsD is a system-specific chaperone that mediates the biogenesis and maturation of DMSO reductase in Escherichia coli. It is required for DmsAB holoenzyme formation and its targeting to the cytoplasmic membrane for translocation by the twin-arginine translocase. Previous studies suggested that DmsD also interacts with general molecular chaperones to assist in folding of the reductase subunits. Here, the interaction between DmsD and GroEL was further characterized to understand the role of GroEL in DMSO reductase maturation. The inherently weak interaction between the two was strengthened in vivo under growth conditions that induce DMSO reductase expression, and the DmsD-GroEL complex showed negligible change in hydrodynamic diameter by dynamic light scattering when cross-linked. Mapping the cross-linked sites on DmsD shows that the GroEL binding site is in close proximity to the previously characterized DmsA leader binding site. These findings support a role of GroEL in DMSO reductase maturation that likely involves its chaperonin function for assisting in folding of the DmsA preprotein.


Asunto(s)
Proteínas Portadoras/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Fenómenos Biofísicos , Péptidos y Proteínas de Señalización Intracelular , Luz , Modelos Moleculares , Unión Proteica , Dispersión de Radiación
4.
Biochim Biophys Acta ; 1838(12): 2971-2984, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25157671

RESUMEN

Redox enzyme maturation proteins (REMPs) are system-specific chaperones required for the maturation of complex iron sulfur molybdoenzymes that are important for anaerobic respiration in bacteria. Although they perform similar biological roles, REMPs are strikingly different in terms of sequence, structure, systems biology, and type of terminal electron acceptor that it supports for growth. Here we critically dissect current knowledge pertaining to REMPs of the nitrate reductase delta superfamily, specifically recognized in Escherichia coli to include NarJ, NarW, TorD, DmsD, and YcdY, also referred to as the NarJ REMP subfamily. We show that NarJ subfamily members share sequence homology and similar structural features as revealed by alignments performed on structurally characterized REMPs. We include an updated phylogenetic analysis of subfamily members, justifying their classification in this subfamily. The structural and functional roles of each member are presented herein and these discussions suggest that although NarJ subfamily members are related in sequence and structure, each member demonstrates remarkable uniqueness, validating the concept of system-specific chaperones.

5.
Open Biochem J ; 8: 1-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24497893

RESUMEN

DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.

6.
J Biol Chem ; 287(45): 38020-7, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22955274

RESUMEN

Production of the proinflammatory cytokine TNFα by activated macrophages is an important component of host defense. However, TNFα production must be tightly controlled to avoid pathological consequences. The anti-inflammatory cytokine IL-10 inhibits TNFα mRNA expression through activation of the STAT3 transcription factor pathway and subsequent expression of STAT3-dependent gene products. We hypothesized that IL-10 must also have more rapid mechanisms of action and show that IL-10 rapidly shifts existing TNFα mRNA from polyribosome-associated polysomes to monosomes. This translation suppression requires the presence of SHIP1 (SH2 domain-containing inositol 5'-phosphatase 1) and involves inhibition of Mnk1 (MAPK signal-integrating kinase 1). Furthermore, activating SHIP1 using a small-molecule agonist mimics the inhibitory effect of IL-10 on Mnk1 phosphorylation and TNFα translation. Our data support the existence of an alternative STAT3-independent pathway through SHIP1 for IL-10 to regulate TNFα translation during the anti-inflammatory response.


Asunto(s)
Interleucina-10/farmacología , Lipopolisacáridos/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular , Células Cultivadas , Femenino , Immunoblotting , Inositol Polifosfato 5-Fosfatasas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/efectos de los fármacos , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética
7.
J Vis Exp ; (66): e3910, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22951950

RESUMEN

The nanodisc is a discoidal particle (~ 10-12 nm large) that trap membrane proteins into a small patch of phospholipid bilayer. The nanodisc is a particularly attractive option for studying membrane proteins, especially in the context of ligand-receptor interactions. The method pioneered by Sligar and colleagues is based on the amphipathic properties of an engineered highly a-helical scaffold protein derived from the apolipoprotein A1. The hydrophobic faces of the scaffold protein interact with the fatty acyl side-chains of the lipid bilayer whereas the polar regions face the aqueous environment. Analyses of membrane proteins in nanodiscs have significant advantages over liposome because the particles are small, homogeneous and water-soluble. In addition, biochemical and biophysical methods normally reserved to soluble proteins can be applied, and from either side of the membrane. In this visual protocol, we present a step-by-step reconstitution of a well characterized bacterial ABC transporter, the MalE-MalFGK2 complex. The formation of the disc is a self-assembly process that depends on hydrophobic interactions taking place during the progressive removal of the detergent. We describe the essential steps and we highlight the importance of choosing a correct protein-to-lipid ratio in order to limit the formation of aggregates and larger polydisperse liposome-like particles. Simple quality controls such as gel filtration chromatography, native gel electrophoresis and dynamic light scattering spectroscopy ensure that the discs have been properly reconstituted.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Escherichia coli/química , Lípidos/química , Nanoestructuras/química , Electroforesis , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Proteínas de la Membrana/química , Proteínas de Unión Periplasmáticas/química , Dispersión de Radiación
8.
Proc Natl Acad Sci U S A ; 109(11): 4104-9, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22378651

RESUMEN

The SecA ATPase associates with the SecY complex to push preproteins across the bacterial membrane. Because a single SecY is sufficient to create the conducting channel, the function of SecY oligomerization remains unclear. Here, we have analyzed the translocation reaction using nanodiscs. We show that one SecY copy is sufficient to bind SecA and the preprotein, but only the SecY dimer together with acidic lipids supports the activation of the SecA translocation ATPase. In discs, the dimer is predominantly arranged in a back-to-back manner and remains active even if a constituent SecY copy is defective for SecA binding. In membrane vesicles and in intact cells, the coproduction of two inactive SecYs, one for channel gating and the other for SecA binding, recreates a functional translocation unit. These results indisputably argue that the SecY dimer is crucial for the activation of SecA, which is necessary for preprotein transport.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Lípidos/química , Proteínas de Transporte de Membrana/metabolismo , Ácidos/química , Proteínas Bacterianas/química , Activación Enzimática , Prueba de Complementación Genética , Proteínas Mutantes/metabolismo , Nanoestructuras/química , Unión Proteica , Multimerización de Proteína , Señales de Clasificación de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
9.
J Proteome Res ; 11(2): 1454-9, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22129326

RESUMEN

Integral membrane proteins are challenging to work with biochemically given their insoluble nature; the nanodisc circumvents the difficulty by stabilizing them in small patches of lipid bilayer. Here, we show that nanodiscs combined with SILAC-based quantitative proteomics can be used to identify the soluble interacting partners of virtually any membrane protein. As a proof of principle, we applied the method to the bacterial SecYEG protein-conducting channel, the maltose transporter MalFGK(2) and the membrane integrase YidC. In contrast to the detergent micelles, which tend to destabilize interactions, the nanodisc was able to capture out of a complex whole cell extract the proteins SecA, Syd, and MalE with a high degree of confidence and specificity. The method was sensitive enough to isolate these interactors as a function of the lipid composition in the disc and the culture conditions. In agreement with a previous photo-cross linking analysis, YidC did not show any high-affinity interactions with cytosolic or periplasmic proteins. These three examples illustrate the utility of nanoscale lipid bilayers to identify the soluble peripheral partners of proteins intergrated in the lipid bilayer.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Nanoestructuras/química , Proteómica/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Marcaje Isotópico/métodos , Metabolismo de los Lípidos , Lípidos/química , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteoma/química , Proteoma/metabolismo
10.
Biochim Biophys Acta ; 1808(9): 2289-96, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21683683

RESUMEN

The twin-arginine translocase (Tat) system is used by many bacteria and plants to move folded proteins across the cytoplasmic or thylakoid membrane. In most bacteria, the TatA protein is believed to form a defined pore in the membrane through homo-oligomerization with other TatA protomers. The predicted secondary structure of TatA includes a transmembrane helix, an amphipathic helix, and an unstructured C-terminal region. Here biophysical and structural investigations were performed on a synthetic peptide representing the amphipathic region of TatA (residues 22 to 44, abbreviated TatAH2). The C-terminal region of TatA (residues 44-89) was previously shown to be accessible from both the cytoplasmic and periplasmic sides of the membrane only when the membrane potential was intact, suggesting dependence of its topology on an energized membrane (Chan et al. 2007 Biochemistry 46: 7396-404). Such observation suggests that the TatAH2 region would have unique lipid interactions that may be related to the function of TatA during translocation and thus warranted further investigations. NMR and CD spectroscopy of TatAH2 show that it adopts a predominantly helical structure in a membrane environment while remaining unstructured in aqueous solution. Differential scanning calorimetry studies also reveal that TatAH2 interacts with DPPG lipids but not with DPPC, suggesting that negatively charged phospholipid head groups contribute to the membrane interactions with TatA.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Peptidil Transferasas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Biofisica/métodos , Rastreo Diferencial de Calorimetría/métodos , Dicroismo Circular , Citoplasma/metabolismo , Fluoresceínas/química , Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Potenciales de la Membrana , Fosfatidilgliceroles/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
FEBS Lett ; 584(22): 4553-8, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20974141

RESUMEN

Redox enzyme substrates of the twin-arginine translocation (Tat) system contain a RR-motif in their leader peptide and require the assistance of chaperones, redox enzyme maturation proteins (REMPs). Here various regions of the RR-containing oxidoreductase subunit (leader peptide, full preprotein with and without a leader cleavage site, mature protein) were assayed for interaction with their REMPs. All REMPs bound their preprotein substrates independent of the cleavage site. Some showed binding to either the leader or mature region, whereas in one case only the preprotein bound its REMP. The absence of Tat also influenced the amount of chaperone-substrate interaction.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Oxidorreductasas/metabolismo , Secuencias de Aminoácidos , Arginina , Dominio Catalítico , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Oxidorreductasas/química , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
12.
Environ Microbiol ; 11(10): 2491-509, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19555372

RESUMEN

Microbiological metal toxicity involves redox reactions between metal species and cellular molecules, and therefore, we hypothesized that antioxidant systems might be chromosomal determinants affecting the susceptibility of bacteria to metal toxicity. Here, survival was quantified in metal ion-exposed planktonic cultures of several Escherichia coli strains, each bearing a mutation in a gene important for redox homeostasis. This characterized approximately 250 gene-metal combinations and identified that sodA, sodB, gor, trxA, gshA, grxA and marR have distinct roles in safeguarding or sensitizing cells to different toxic metal ions (Cr(2)O(7)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), AsO(2)(-), SeO(3)(2-) or TeO(3)(2-)). To shed light on these observations, fluorescent sensors for reactive oxygen species (ROS) and reduced thiol (RSH) quantification were used to ascertain that different metal ions exert oxidative toxicity through disparate modes-of-action. These oxidative mechanisms of metal toxicity were categorized as involving ROS and thiol-disulfide chemistry together (AsO(2)(-), SeO(3)(2-)), ROS predominantly (Cu(2+), Cr(2)O(7)(2-)) or thiol-disulfide chemistry predominantly (Ag(+), Co(2+), Zn(2+), TeO(3)(2-)). Corresponding to this, promoter-luxCDABE fusions showed that toxic doses of different metal ions up- or downregulate the transcription of gene sets marking distinct pathways of cellular oxidative stress. Altogether, our findings suggest that different metal ions are lethal to cells through discrete pathways of oxidative biochemistry, and moreover, indicate that chromosomally encoded antioxidant systems may have metal ion-specific physiological roles as determinants of bacterial metal tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Cromosomas Bacterianos/genética , Escherichia coli/metabolismo , Genes Bacterianos , Metales/metabolismo , Aniones/química , Antioxidantes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Metales/química , Oxidación-Reducción , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
13.
J Bacteriol ; 191(7): 2091-101, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19151138

RESUMEN

The twin-arginine translocase (Tat) system is used by many bacteria to move proteins across the cytoplasmic membrane. Tat substrates are prefolded and contain a conserved SRRxFLK twin-arginine (RR) motif at their N termini. Many Tat substrates in Escherichia coli are cofactor-containing redox enzymes that have specific chaperones called redox enzyme maturation proteins (REMPs). Here we characterized the interactions between 10 REMPs and 15 RR peptides of known and predicted Tat-specific redox enzyme subunits. A combination of in vitro and in vivo experiments demonstrated that some REMPs were specific to a redox enzyme(s) of similar function, whereas others were less specific and bound peptides of unrelated enzymes. Results from Biacore surface plasmon resonance (SPR) and bacterial two-hybrid experiments identified interactions in addition to those found in far-Western experiments, suggesting that conformational freedom and/or other cellular factors may be required. Furthermore, we show that the interaction of the two prevents both from being proteolytically degraded in vivo, and kinetic data from SPR show up to 10-fold-tighter binding to the expected RR substrate when multiple binding partners existed. Investigations using full-length sequences of the RR proteins showed that the mature portion for some redox enzyme subunits is required for detection of the interactions. Sequence alignments among the REMPs and RR peptides indicated that homology between the REMPs and the hydrophobic regions following the RR motifs in the peptides correlates to cross-recognition.


Asunto(s)
Arginina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Unión Proteica , Alineación de Secuencia , Resonancia por Plasmón de Superficie
14.
Antimicrob Agents Chemother ; 52(8): 2870-81, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519726

RESUMEN

Biofilms are slimy aggregates of microbes that are likely responsible for many chronic infections as well as for contamination of clinical and industrial environments. Pseudomonas aeruginosa is a prevalent hospital pathogen that is well known for its ability to form biofilms that are recalcitrant to many different antimicrobial treatments. We have devised a high-throughput method for testing combinations of antimicrobials for synergistic activity against biofilms, including those formed by P. aeruginosa. This approach was used to look for changes in biofilm susceptibility to various biocides when these agents were combined with metal ions. This process identified that Cu(2+) works synergistically with quaternary ammonium compounds (QACs; specifically benzalkonium chloride, cetalkonium chloride, cetylpyridinium chloride, myristalkonium chloride, and Polycide) to kill P. aeruginosa biofilms. In some cases, adding Cu(2+) to QACs resulted in a 128-fold decrease in the biofilm minimum bactericidal concentration compared to that for single-agent treatments. In combination, these agents retained broad-spectrum antimicrobial activity that also eradicated biofilms of Escherichia coli, Staphylococcus aureus, Salmonella enterica serovar Cholerasuis, and Pseudomonas fluorescens. To investigate the mechanism of action, isothermal titration calorimetry was used to show that Cu(2+) and QACs do not interact in aqueous solutions, suggesting that each agent exerts microbiological toxicity through independent biochemical routes. Additionally, Cu(2+) and QACs, both alone and in combination, reduced the activity of nitrate reductases, which are enzymes that are important for normal biofilm growth. Collectively, the results of this study indicate that Cu(2+) and QACs are effective combinations of antimicrobials that may be used to kill bacterial biofilms.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobre/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Biopelículas/crecimiento & desarrollo , Calorimetría , Microscopía Confocal , Pseudomonas aeruginosa/fisiología
15.
Biochemistry ; 47(9): 2749-59, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18247574

RESUMEN

The twin-arginine translocase (Tat) system is used for the targeting and translocation of folded proteins across the cell membrane of most bacteria. Substrates of this system contain a conserved "twin-arginine" (RR) motif within their signal/leader peptide sequence. Many Tat substrates have their own system-specific chaperone called redox enzyme maturation proteins (REMPs). Here, we study the binding of DmsD, the REMP for dimethyl sulfoxide reductase in Escherichia coli, toward the RR-containing leader peptide of the catalytic subunit DmsA. We have used a multipronged approach targeted at the amino acid sequence of DmsD to define residues and regions important for recognition of the DmsA leader sequence. Residues identified through bioinformatics and THEMATICS analysis were mutated using site-directed mutagenesis. These DmsD residue variants were purified and screened with an in vitro dot-blot far-Western assay to analyze the binding to the DmsA leader sequence. Degenerative polymerase chain reaction was also used to produce a bank of random DmsD amino acid mutants, which were then screened by an in vivo bacterial two-hybrid assay. Using this hybrid method, each DmsD variant was classified into one of three groups based on their degree of interaction with the DmsA leader (none, weak, and moderate). The data from both the in vitro and in vivo analyses were then applied to a model structure of DmsD based on the crystal structure of the Salmonella typhimurium homologue. Our results illustrate the positions of important DmsD residues involved in binding the DmsA leader peptide and identify a "hot pocket" of residues important for leader binding on the structure of DmsD.


Asunto(s)
Arginina/química , Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Arginina/genética , Arginina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Biología Computacional/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido
16.
Adv Biochem Eng Biotechnol ; 110: 195-214, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18219468

RESUMEN

The identification of protein interaction partners can often elucidate the function of the protein under investigation based on the "guilty by association" concept. Furthermore, the binding event between two proteins can be used as a functional assay when no such assay is available. Despite the large number of advanced techniques that are currently available for studying protein-protein interactions, far-Westerns or blot overlays are still very commonly used in the average laboratory setting due to their powerfulness. This is due to the simplicity and clarity in the results that they produce. Here, the details and mechanics of far-Westerns are discussed to help the reader choose amongst the different variations that exist depending on the question being investigated and the materials available to them. Some examples involving unique questions are also discussed in order to educate the reader on the versatility of far-Westerns. Finally, a troubleshooting section provides the reader with an understanding of the common problems that can be encountered and how these problems can be circumvented.


Asunto(s)
Western Blotting/instrumentación , Western Blotting/métodos , Mapeo de Interacción de Proteínas/instrumentación , Mapeo de Interacción de Proteínas/métodos , Western Blotting/tendencias , Mapeo de Interacción de Proteínas/tendencias
17.
Biochemistry ; 46(25): 7396-404, 2007 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-17536842

RESUMEN

The twin-arginine translocase (Tat) system is used by many bacteria to translocate folded proteins across the cytoplasmic membrane. The TatA subunit is the predicted pore-forming subunit and has been shown to form a homo-oligomeric complex. Through accessibility experiments using the thiol-reactive reagents 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and Nalpha-(3-maleimidylproprionyl)biocytin toward site-specific cysteine mutants in TatA, we show that the N-terminus of TatA is located in the cytoplasm rather than the previously assumed periplasm. We also confirm previous observations that the C-terminus has a dual topology. By treatment with the membrane uncoupler carbonyl cyanide-m-chlorophenyl hydrazone, we show that the topological state of the C-terminus is dependent on the membrane potential. These results suggest two architectures of TatA in the membrane: one with a single transmembrane helix and the other with two transmembrane helices. Molecular models of both topologies were used to develop and cartoon a homo-oligomeric complex as a channel with a diameter of approximately 50 A and suggest that the double transmembrane helix topology might be the building block for the translocation channel. Additionally, in vivo cross-linking experiments of Gly2Cys and Thr22Cys mutants showed that Gly2, at the beginning of transmembrane helix-1, is in close proximity with Gly2 of a neighboring TatA, as Cys2 cross-linked immediately upon the addition of copper phenanthroline. On the other hand, Cys22, at the other end of the transmembrane helix, took at least 10 min to cross-link, suggesting that a possible movement or reorientation is required to bring this residue into proximity with a neighboring TatA subunit.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/química , Mutación Puntual , Subunidades de Proteína/química , Subunidades de Proteína/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Cisteína/química , Cisteína/genética , Citoplasma/química , Citoplasma/metabolismo , Dimerización , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Histidina/química , Potenciales de la Membrana , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Desacopladores/farmacología
18.
Biochem Biophys Res Commun ; 343(1): 244-51, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16540088

RESUMEN

NarJ is a chaperone involved in folding, maturation, and molybdenum cofactor insertion of nitrate reductase A from Escherichia coli. It has also been shown that NarJ exhibits sequence homology to a family of chaperones involved in maturation and cofactor insertion of E. coli redox enzymes that are mediated by twin-arginine translocase (Tat) dependent translocation. In this study, we show that NarJ binds the N-terminal region of NarG through Far Western studies and isothermal titration calorimetry, and the binding event occurs towards a short peptide sequence that contains a homologous twin-arginine motif. Fractionation experiments also show that the interaction of NarJ to the cytoplasmic membrane exhibits Tat-dependence. Upon further investigation through Far Western blots, the interactome of NarJ also exhibits Tat-dependence. Together the data suggest that the Tat system may play a role in the maturation pathway of nitrate reductase A.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/fisiología , Chaperonas Moleculares/metabolismo , Nitrato-Reductasa/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Nitrato-Reductasa/química , Conformación Proteica , Mapeo de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...