Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Cachexia Sarcopenia Muscle ; 13(1): 515-531, 2022 02.
Article En | MEDLINE | ID: mdl-34766473

BACKGROUND: Age-related muscle dysfunctions are common disorders resulting in poor quality of life in the elderly. Probiotic supplementation is a potential strategy for preventing age-related sarcopenia as evidence suggests that probiotics can enhance muscle function via the gut-muscle axis. However, the effects and mechanisms of probiotics in age-related sarcopenia are currently unknown. In this study, we examined the effects of Lactobacillus casei Shirota (LcS), a probiotic previously reported to improve muscle function in young adult mice. METHODS: We administered LcS (1 × 108 or 1 × 109  CFU/mouse/day) by oral gavage to senescence-accelerated mouse prone-8 mice for 12 weeks (16- to 28-week-old). Sixteen-week-old and 28-week-old SMAP8 mice were included as non-aged and aged controls, respectively. Muscle condition was evaluated using dual-energy X-ray absorptiometry for muscle mass, holding impulse and grip strength tests for muscle strength, and oxygen consumption rate, gene expressions of mitochondrial biogenesis, and mitochondrial number assays for mitochondria function. Inflammatory cytokines were determined using enzyme-linked immunosorbent assay. Gas chromatography-mass spectrometry was utilized to measure the short-chain fatty acid levels. The gut microbiota was analysed based on the data of 16S rRNA gene sequencing of mouse stool. RESULTS: The LcS supplementation reduced age-related declines in muscle mass (>94.6%, P < 0.04), strength (>66% in holding impulse and >96.3% in grip strength, P < 0.05), and mitochondrial function (P < 0.05). The concentration of short-chain fatty acids (acetic, isobutyric, butyric, penic, and hexanoic acid) was recovered by LcS (>65.9% in the mice given high dose of LcS, P < 0.05) in the aged mice, and LcS attenuated age-related increases in inflammation (P < 0.05) and reactive oxygen species (>89.4%, P < 0.001). The high dose of LcS supplementation was also associated with distinct microbiota composition as indicated by the separation of groups in the beta-diversity analysis (P = 0.027). LcS supplementation altered predicted bacterial functions based on the gut microbiota. Apoptosis (P = 0.026), p53 signalling (P = 0.017), and non-homologous end-joining (P = 0.031) were significantly reduced, whereas DNA repair and recombination proteins (P = 0.043), RNA polymerase (P = 0.008), and aminoacyl-tRNA biosynthesis (P = 0.003) were increased. Finally, the genera enriched by high-dose LcS [linear discriminant analysis (LDA) score > 2.0] were positively correlated with healthy muscle and physiological condition (P < 0.05), while the genera enriched in aged control mice (LDA score > 2.0) were negatively associated with healthy muscle and physiological condition (P < 0.05). CONCLUSIONS: Lactobacillus casei Shirota represents an active modulator that regulates the onset and progression of age-related muscle impairment potentially via the gut-muscle axis.


Probiotics , Sarcopenia , Animals , Mice , Muscles , Probiotics/therapeutic use , Quality of Life , RNA, Ribosomal, 16S/genetics , Sarcopenia/therapy
2.
Sci Rep ; 11(1): 19478, 2021 09 30.
Article En | MEDLINE | ID: mdl-34593870

Immunomodulation is an ability of several particular probiotics. However, it still remains unclear whether the immunomodulatory effects of specific probiotics vary for different antigen presentation models with the same antigen. To investigate this matter, six groups of BALB/c mice (n = 10) were exposed to one of two antigen presentation models: ovalbumin (OVA) by injection alone, or injection plus intranasal administration. Moreover, the mice were fed distilled water or Lactobacillus casei Shirota fermented beverage (LcSFB) at low (2.5 × 109 CFU/kg body weight) or high doses (5 × 109 CFU/kg body weight) by gavage for 8 weeks. LcSFB enhanced the proliferation of splenocytes, production of OVA-specific immunoglobulin (Ig)-G and IgA, and the ratio of T-helper (Th)-2/Th1 cytokines in mice injected with OVA. Conversely, in the mice treated with OVA by injection plus intranasal administration, LcSFB attenuated the immune responses against OVA by reducing the proliferation of splenocytes, levels of OVA-specific IgE, IgG, and IgM, and ratio of Th2/Th1 cytokines. Moreover, LcSFB increased the percentage of regulatory T cells in the injection plus intranasal administration group. Taken together, this work indicates the immunoregulatory effects of LcSFB depend on how the antigen is presented. Therefore, the use of probiotics to boost the immune system must be carefully considered.


Antigen Presentation , Immunity , Immunomodulation , Lacticaseibacillus casei/immunology , Ovalbumin/immunology , Probiotics/administration & dosage , Animals , Antibody Formation/immunology , Cytokines/metabolism , Fermented Beverages , Immunophenotyping , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred BALB C , Spleen/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
3.
Nutrients ; 13(4)2021 Mar 29.
Article En | MEDLINE | ID: mdl-33805289

Probiotics are reported to improve gastrointestinal (GI) function via regulating gut microbiota (GM). However, exactly how probiotics influence GM and GI function in elders is poorly characterized. Therefore, in this study, we assessed the effect of the probiotic Lacticaseibacillus paracasei PS23 (LPPS23) on the GM and GI function of aged mice. There were four groups of senescence-accelerated mouse prone-8 (SAMP8) mice (n = 4): a non-treated control group, a saline control group, a low dose LPPS23 group (1 × 108 colony-forming unit (CFU)/mouse/day), and a high dose LPPS23 group (1 × 109 CFU/mouse/day). Non-treated mice were euthanized at 16 weeks old, and others were euthanized at 28 weeks old. The next-generation sequencing results revealed that LPPS23 enriched Lactobacillus and Candidatus_Saccharimonas, while the abundance of Lachnospiraceae_UCG_001 decreased in aged mice given LPPS23. The abundance of Lactobacillus negatively correlated with the abundance of Erysipelotrichaceae. Moreover, LPPS23 improved the GI function of aged mice due to the longer intestine length, lower intestinal permeability, and higher phagocytosis in LPPS23-treated mice. The ELISA results showed that LPPS23 attenuated the alterations of pro-inflammatory factors and immunoglobulins. The abundance of LPPS23-enriched Lactobacillus was positively correlated with healthy GI function, while Lachnospiraceae_UCG_001, which was repressed by LPPS23, was negatively correlated with a healthy GI function in the aged mice according to Spearman's correlation analysis. Taken together, LPPS23 can effectively modulate GM composition and improve GI function in aged SAMP8 mice.


Aging , Gastrointestinal Microbiome , Lactobacillus , Probiotics , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Immunoglobulins/blood , Mice , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
Aging (Albany NY) ; 11(2): 756-770, 2019 01 29.
Article En | MEDLINE | ID: mdl-30696799

Sarcopenia is a common impairment in the elderly population responsible for poor outcomes later in life; it can be caused by age-related alternations. Only a few strategies have been reported to reduce sarcopenia. Lactobacillus paracasei PS23 (LPPS23) has been reported to delay some age-related disorders. Therefore, here we investigated whether LPPS23 decelerates age-related muscle loss and its underlying mechanism. Female senescence-accelerated mouse prone-8 (SAMP8) mice were divided into three groups (n=6 each): non-aging (16-week-old), control (28-week-old), and PS23 (28-week-old) groups. The control and PS23 groups were given saline and LPPS23, respectively. We evaluated the effects of LPPS23 by analyzing body weight and composition, muscle strength, protein uptake, mitochondrial function, reactive oxygen species (ROS), antioxidant enzymes, and inflammation-related cytokines. LPPS23 significantly attenuated age-related decreases of muscle mass and strength. Compared to the control group, the non-aging and PS23 groups exhibited higher mitochondrial function, IL10, antioxidant enzymes, and protein uptake. Moreover, inflammatory cytokines and ROS were lower in the non-aging and PS23 groups than the control group. Taken together, LPPS23 extenuated sarcopenia progression during aging; this effect might have been enacted by preserving the mitochondrial function via reducing age-related inflammation and ROS and by retaining protein uptake in the SAMP8 mice.


Aging , Lacticaseibacillus paracasei/physiology , Mitochondria , Probiotics/pharmacology , Sarcopenia/prevention & control , Animals , Body Composition , Body Weight , Cytokines/genetics , Cytokines/metabolism , Dietary Proteins/metabolism , Digestion , Feces/chemistry , Gene Expression Regulation/drug effects , Inflammation/metabolism , Mice , Mice, Inbred Strains , Oxidative Stress
5.
Nutrients ; 10(7)2018 Jul 12.
Article En | MEDLINE | ID: mdl-30002347

Probiotic supplements are potential therapeutic agents for age-related disorders due to their antioxidant and anti-inflammatory properties. However, the effect of probiotics on age-related brain dysfunction remains unclear. To investigate the effects of Lactobacillus paracasei PS23 (LPPS23) on the progression of age-related cognitive decline, male and female senescence-accelerated mouse prone 8 (SAMP8) mice were divided into two groups (n = 6 each): the control and PS23 groups. From the age of 16 weeks, these groups were given saline and LPPS23, respectively, because SAMP8 mice start aging rapidly after four months of age. After 12 weeks of treatment, we evaluated the effect of LPPS23 by analyzing their appearance, behavior, neural monoamines, anti-oxidative enzymes, and inflammatory cytokines. The PS23 group showed lower scores of senescence and less serious anxiety-like behaviors and memory impairment compared to the control group. The control mice also showed lower levels of neural monoamines in the striatum, hippocampus, and serum. Moreover, LPPS23 induced the anti-oxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). Higher levels of tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 (MCP1) and lower levels of interleukin (IL)-10 indicated that LPPS23 modulated the inflammation. Our results suggest that LPPS23 supplements could delay age-related cognitive decline, possibly by preventing oxidation and inflammation and modulating gut⁻brain axis communication.


Behavior, Animal , Cognition , Cognitive Aging/psychology , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/psychology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Lacticaseibacillus paracasei/physiology , Probiotics/administration & dosage , Age Factors , Animals , Biogenic Monoamines/blood , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/physiopathology , Cytokines/blood , Disease Models, Animal , Disease Progression , Female , Glutathione Peroxidase/blood , Hippocampus/metabolism , Hippocampus/physiopathology , Inflammation Mediators/blood , Male , Mice , Oxidative Stress , Superoxide Dismutase/blood , Time Factors
6.
Nutrients ; 10(4)2018 Apr 18.
Article En | MEDLINE | ID: mdl-29670038

Taiwanese green propolis ethanol extract (TGPE) is produced only in Taiwan and has a different composition from other types of propolis. TGPE is known for its anti-inflammation, anti-oxidation, and anti-microbial properties, but the effects and mechanisms of TGPE in the modulation of diabetes are unclear. In this study, we investigated the effects of TGPE on type 2 diabetes mellitus (T2DM) in a streptozotocin/high-fat-diet (STZ/HFD)-induced T2DM rat model. The results revealed that TGPE delayed the development and progression of T2DM and reduced the severity of β-cell failure. TGPE also attenuated inflammation and reactive oxygen species ROS in the rats. Moreover, there were higher levels of oxidant cytokines, leptin, and adiponectin in the serum of the TGPE-treated group. Unlike Brazilian propolis, TGPE promoted hepatic genes PPAR-α and CYP7A1, which were related to lipid catabolism and removal. TGPE may thus delay the progression of T2DM through anti-inflammation effects, anti-oxidation effects, and balancing lipid metabolism. It is suggested that TGPE can be a potential alternative medicine for T2DM.


Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Hypoglycemic Agents/pharmacology , Propolis/pharmacology , Animals , Blood Glucose , Diabetes Mellitus, Type 2/chemically induced , Drinking , Ethanol , Glucose Tolerance Test , Hypoglycemic Agents/chemistry , Insulin/blood , Insulin Resistance , Male , Propolis/chemistry , Rats , Rats, Sprague-Dawley , Weight Gain
7.
J Nutr Biochem ; 54: 87-94, 2018 04.
Article En | MEDLINE | ID: mdl-29329013

Obesity is a serious and costly issue to the medical welfare worldwide. Probiotics have been suggested as one of the candidates to resolve the obesity-associated problems, but how they combat obesity is not fully understood. Herein, we investigated the effects of Lactobacillus reuteri 263 (L. reuteri 263) on antiobesity using four groups of Sprague-Dawley rats (n=10/group), namely, C (normal diet with vehicle treatment), HE [high-energy diet (HED) with vehicle treatment], 1X (HED with 2.1×109 CFU/kg/day of L. reuteri 263) and 5X (HED with 1.05×1010 CFU/kg/day of L. reuteri 263), for 8 weeks. L. reuteri 263 improved the phenomenon of obesity, serum levels of proinflammatory factors and antioxidant enzymes. More importantly, L. reuteri 263 increased oxygen consumption in white adipose tissue (WAT). The mRNA expressions of thermogenesis genes uncoupling protein-1, uncoupling protein-3, carnitine palmitoyltransferase-1 and cell death-inducing DFFA-like effector-a were up-regulated in WAT of the 5X group. Moreover, L. reuteri 263 might induce browning of WAT due to the higher mRNA levels of browning-related genes peroxisome proliferator-activated receptor-γ, PR domain containing-16, Pparγ coactivator-1α, bone morphogenetic protein-7 and fibroblast growth factor-21 in the 1X and 5X groups compared to the HE group. Finally, L. reuteri 263 altered the expressions of genes involved in glucose and lipid metabolisms in WAT, including increasing the levels of glucose transporter type 4 and carbohydrate-responsive element-binding protein and decreasing the expression of Acetyl-CoA carboxylase-1. The results suggest that L. reuteri 263 may treat obesity through energy metabolism remodeling of WAT in the high-energy-diet-induced obese rats.


Adipose Tissue, White/metabolism , Anti-Obesity Agents/pharmacology , Energy Metabolism/physiology , Limosilactobacillus reuteri , Administration, Oral , Animals , Anti-Obesity Agents/administration & dosage , Antioxidants/metabolism , Energy Intake , Energy Metabolism/genetics , Enzymes/blood , Gene Expression Regulation , Glucose/metabolism , Lipid Metabolism , Male , Oxygen Consumption , Probiotics/pharmacology , Rats, Sprague-Dawley
8.
Food Nutr Res ; 61(1): 1347480, 2017.
Article En | MEDLINE | ID: mdl-28804438

Background: A wealth of research has reported on the anti-obesity effects of green tea extract (GTE). Although browning of white adipose tissue (WAT) has been reported to attenuate obesity, no study has disclosed the effects of GTE on browning in Sprague Dawley rats. Objectives: The aims of the study were to investigate the effects of GTE on anti-obesity and browning, and their underlying mechanisms. Methods: Four groups of rats (n=10/group) were used including a normal diet with vehicle treatment, and a high-energy diet (HED) with vehicle or GTE by oral gavage at 77.5 or 155 mg/kg/day for 8 weeks. Body weight, fat accumulation, and serum biochemical parameters were used to evaluate obesity. The gene expressions were analyzed using RT-qPCR and western blotting. Results: GTE modulated HED-induced body weight, fat accumulation, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein, free fatty acids, aspartate aminotransferase, and alanine aminotransferase. Moreover, GTE enhanced the serum high-density lipoprotein. Most importantly, the biomarkers of beige adipose tissue were up-regulated in WAT in GTE-given groups. GTE induced genes involved in different pathways of browning, and reduced transducin-like enhancer protein-3 in WAT. Conclusion: Our results suggest that GTE may improve obesity through inducing browning in HED-fed rats. Abbreviations: ALT: Alanine transaminase; AST: Aspartate transaminase; BAT: Brown adipose tissue; BMP-7: Bone morphogenetic protein-7; BW: Body weight; CIDEA: Cell death activator; CPT-1: Carnitine palmitoyltransferase-1; EFP: Epididymal fat pad; FFA: Free fatty acid; FGF-21: Fibroblast growth factor-21; GTE: Green tea extract; HDL: High-density lipoprotein; HED: high-energy diet; LDL: Low-density lipoprotein; MFP: Mesenteric fat pad; PGC-1α: Activates PPAR-γ coactivator-1; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PRDM-16: PR domain containing 16; RFP: Renal fat pad; SD: Sprague Dawley; TC: Total cholesterol; TG: Triacylglycerol; TLE-3: Transducin-like enhancer protein-3: UCP-1: Uncoupling protein-1; WAT: White adipose tissue.

9.
Nutrients ; 7(5): 3767-82, 2015 May 15.
Article En | MEDLINE | ID: mdl-25988768

We aimed to verify the beneficial effects of probiotic strain Lactobacillus reuteri 263 (Lr263) on hypolipidemic action in hamsters with hyperlipidemia induced by a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet (HCD)). Male Golden Syrian hamsters were randomly divided into two groups: normal (n = 8), standard diet (control), and experimental (n = 32), a HCD. After a two-week induction followed by a six-week supplementation with Lr263, the 32 hyperlipidemic hamsters were divided into four groups (n = 8 per group) to receive vehicle or Lr263 by oral gavage at 2.1, 4.2, or 10.5 × 10(9) cells/kg/day for 6 weeks, designated the HCD, 1X, 2X and 5X groups, respectively. The efficacy and safety of Lr263 supplementation were evaluated by lipid profiles of serum, liver and feces and by clinical biochemistry and histopathology. HCD significantly increased serum levels of total cholesterol (TC), triacylglycerol (TG) cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C ratio, hepatic and fetal TC and TG levels, and degree of fatty liver as compared with controls. Lr263 supplementation dose dependently increased serum HDL-C level and decreased serum TC, TG, LDL-C levels, LDL-C/HDL-C ratio, hepatic TC and TG levels, and fecal TG level. In addition, Lr263 supplementation had few subchronic toxic effects. Lr263 could be a potential agent with a hypolipidemic pharmacological effect.


Cholesterol/blood , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Limosilactobacillus reuteri , Liver/metabolism , Probiotics/therapeutic use , Triglycerides/metabolism , Animals , Cricetinae , Diet, High-Fat , Disease Models, Animal , Fatty Liver/prevention & control , Feces/chemistry , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Liver/pathology , Male , Mesocricetus
...