Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37134042

RESUMEN

Fusing low-resolution (LR) hyperspectral images (HSIs) with high-resolution (HR) multispectral images (MSIs) is a significant technology to enhance the resolution of HSIs. Despite the encouraging results from deep learning (DL) in HSI-MSI fusion, there are still some issues. First, the HSI is a multidimensional signal, and the representability of current DL networks for multidimensional features has not been thoroughly investigated. Second, most DL HSI-MSI fusion networks need HR HSI ground truth for training, but it is often unavailable in reality. In this study, we integrate tensor theory with DL and propose an unsupervised deep tensor network (UDTN) for HSI-MSI fusion. We first propose a tensor filtering layer prototype and further build a coupled tensor filtering module. It jointly represents the LR HSI and HR MSI as several features revealing the principal components of spectral and spatial modes and a sharing code tensor describing the interaction among different modes. Specifically, the features on different modes are represented by the learnable filters of tensor filtering layers, the sharing code tensor is learned by a projection module, in which a co-attention is proposed to encode the LR HSI and HR MSI and then project them onto the sharing code tensor. The coupled tensor filtering module and projection module are jointly trained from the LR HSI and HR MSI in an unsupervised and end-to-end way. The latent HR HSI is inferred with the sharing code tensor, the features on spatial modes of HR MSIs, and the spectral mode of LR HSIs. Experiments on simulated and real remote-sensing datasets demonstrate the effectiveness of the proposed method.

2.
IEEE Trans Cybern ; 52(12): 13887-13901, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35081033

RESUMEN

Recently, tensor sparsity modeling has achieved great success in the tensor completion (TC) problem. In real applications, the sparsity of a tensor can be rationally measured by low-rank tensor decomposition. However, existing methods either suffer from limited modeling power in estimating accurate rank or have difficulty in depicting hierarchical structure underlying such data ensembles. To address these issues, we propose a parametric tensor sparsity measure model, which encodes the sparsity for a general tensor by Laplacian scale mixture (LSM) modeling based on three-layer transform (TLT) for factor subspace prior with Tucker decomposition. Specifically, the sparsity of a tensor is first transformed into factor subspace, and then factor sparsity in the gradient domain is used to express the local similarity in within-mode. To further refine the sparsity, we adopt LSM by the transform learning scheme to self-adaptively depict deeper layer structured sparsity, in which the transformed sparse matrices in the sense of a statistical model can be modeled as the product of a Laplacian vector and a hidden positive scalar multiplier. We call the method as parametric tensor sparsity delivered by LSM-TLT. By a progressive transformation operator, we formulate the LSM-TLT model and use it to address the TC problem, and then the alternating direction method of multipliers-based optimization algorithm is designed to solve the problem. The experimental results on RGB images, hyperspectral images (HSIs), and videos demonstrate the proposed method outperforms state of the arts.

3.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6916-6930, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34143740

RESUMEN

Existing methods for tensor completion (TC) have limited ability for characterizing low-rank (LR) structures. To depict the complex hierarchical knowledge with implicit sparsity attributes hidden in a tensor, we propose a new multilayer sparsity-based tensor decomposition (MLSTD) for the low-rank tensor completion (LRTC). The method encodes the structured sparsity of a tensor by the multiple-layer representation. Specifically, we use the CANDECOMP/PARAFAC (CP) model to decompose a tensor into an ensemble of the sum of rank-1 tensors, and the number of rank-1 components is easily interpreted as the first-layer sparsity measure. Presumably, the factor matrices are smooth since local piecewise property exists in within-mode correlation. In subspace, the local smoothness can be regarded as the second-layer sparsity. To describe the refined structures of factor/subspace sparsity, we introduce a new sparsity insight of subspace smoothness: a self-adaptive low-rank matrix factorization (LRMF) scheme, called the third-layer sparsity. By the progressive description of the sparsity structure, we formulate an MLSTD model and embed it into the LRTC problem. Then, an effective alternating direction method of multipliers (ADMM) algorithm is designed for the MLSTD minimization problem. Various experiments in RGB images, hyperspectral images (HSIs), and videos substantiate that the proposed LRTC methods are superior to state-of-the-art methods.

4.
IEEE Trans Image Process ; 30: 3084-3097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33596175

RESUMEN

Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.

5.
IEEE Trans Neural Netw Learn Syst ; 31(11): 4567-4581, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31880566

RESUMEN

Conventional tensor completion (TC) methods generally assume that the sparsity of tensor-valued data lies in the global subspace. The so-called global sparsity prior is measured by the tensor nuclear norm. Such assumption is not reliable in recovering low-rank (LR) tensor data, especially when considerable elements of data are missing. To mitigate this weakness, this article presents an enhanced sparsity prior model for LRTC using both local and global sparsity information in a latent LR tensor. In specific, we adopt a doubly weighted strategy for nuclear norm along each mode to characterize global sparsity prior of tensor. Different from traditional tensor-based local sparsity description, the proposed factor gradient sparsity prior in the Tucker decomposition model describes the underlying subspace local smoothness in real-world tensor objects, which simultaneously characterizes local piecewise structure over all dimensions. Moreover, there is no need to minimize the rank of a tensor for the proposed local sparsity prior. Extensive experiments on synthetic data, real-world hyperspectral images, and face modeling data demonstrate that the proposed model outperforms state-of-the-art techniques in terms of prediction capability and efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA