Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 19(6): 890-905, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38759645

RESUMEN

Lung alveolar structure and function are maintained by subsets of alveolar type II stem cells (AT2s), but there is a need for characterization of these subsets and their associated niches. Here, we report a CD44high subpopulation of AT2s characterized by increased expression of genes that regulate immune signaling even during steady-state homeostasis. Disruption of one of these immune regulatory transcription factor STAT1 impaired the stem cell function of AT2s. CD44high cells were preferentially located near macro- blood vessels and a supportive niche constituted by LYVE1+ endothelial cells, adventitial fibroblasts, and accumulated hyaluronan. In this microenvironment, CD44high AT2 cells were more responsive to transformation by KRAS than general AT2 cells. Moreover, after bacterial lung injury, there was a significant increase of CD44high AT2s and niche components distributed throughout the lung parenchyma. Taken together, CD44high AT2 cells and their perivascular niche regulate tissue homeostasis and tumor formation.


Asunto(s)
Células Epiteliales Alveolares , Homeostasis , Receptores de Hialuranos , Nicho de Células Madre , Animales , Receptores de Hialuranos/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Ratones , Pulmón/metabolismo , Células Madre/metabolismo , Células Madre/citología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Factor de Transcripción STAT1/metabolismo , Células Endoteliales/metabolismo
2.
Stem Cell Res Ther ; 13(1): 170, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477551

RESUMEN

Alveoli are the functional units of blood-gas exchange in the lung and thus are constantly exposed to outside environments and frequently encounter pathogens, particles and other harmful substances. For example, the alveolar epithelium is one of the primary targets of the SARS-CoV-2 virus that causes COVID-19 lung disease. Therefore, it is essential to understand the cellular and molecular mechanisms by which the integrity of alveoli epithelial barrier is maintained. Alveolar epithelium comprises two cell types: alveolar type I cells (AT1) and alveolar type II cells (AT2). AT2s have been shown to function as tissue stem cells that repair the injured alveoli epithelium. Recent studies indicate that AT1s and subgroups of proximal airway epithelial cells can also participate alveolar repair process through their intrinsic plasticity. This review discussed the potential mechanisms that drive the reparative behaviors of AT2, AT1 and some proximal cells in responses to injury and how an abnormal repair contributes to some pathological conditions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Células Epiteliales Alveolares/metabolismo , Humanos , Alveolos Pulmonares/metabolismo , Células Madre/metabolismo
3.
Cell Rep ; 31(13): 107828, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610129

RESUMEN

Lung alveolar epithelium is composed of alveolar type I (AT1) and type II (AT2) cells. AT1 cells mediate gas exchange, whereas AT2 cells act as progenitor cells to repair injured alveoli. Lung microvascular endothelial cells (LMVECs) play a crucial but still poorly understood role in regulating alveolar repair. Here, we studied the role of the LMVEC-derived bioactive lipid sphingosine-1-phosphate (S1P) in promoting alveolar repair using mice with endothelial-specific deletion of sphingosine kinase 1 (Sphk1), the key enzyme promoting S1P generation. These mutant lungs developed airspace-enlargement lesions and exhibited a reduced number of AT1 cells after Pseudomonas-aeruginosa-induced lung injury. We demonstrated that S1P released by LMVECs acted via its receptor, S1PR2, on AT2 cells and induced nuclear translocation of yes-associated protein (YAP), a regulator of AT2 to AT1 transition. Thus, angiocrine S1P released after injury acts via the S1PR2-YAP signaling axis on AT2 cells to promote AT2 to AT1 differentiation required for alveolar repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pulmón/patología , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Regeneración , Transducción de Señal , Esfingosina/análogos & derivados , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Recuento de Células , Regulación hacia Abajo/efectos de los fármacos , Femenino , Pulmón/efectos de los fármacos , Pulmón/microbiología , Masculino , Ratones , Fenotipo , Pseudomonas aeruginosa/fisiología , Pirazoles/farmacología , Piridinas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Proteínas Señalizadoras YAP
4.
PLoS One ; 12(5): e0176242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28464031

RESUMEN

PURPOSE: Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. METHODS: In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid). RESULTS: The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. CONCLUSION: Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.


Asunto(s)
Colon/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Hipoglucemiantes/farmacología , Metformina/farmacología , Anciano , Temperatura Corporal , Colon/efectos de los fármacos , Metabolismo Energético , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos
5.
Biomed Microdevices ; 18(5): 80, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27534648

RESUMEN

We present a novel pumpless microfluidic array driven by surface tension for studying the physiology of pancreatic islets of Langerhans. Efficient fluid flow in the array is achieved by surface tension-generated pressure as a result of inlet and outlet size differences. Flow properties are characterized in numerical simulation and further confirmed by experimental measurements. Using this device, we perform a set of biological assays, which include real-time fluorescent imaging and insulin secretion kinetics for both mouse and human islets. Our results demonstrate that this system not only drastically simplifies previously published experimental protocols for islet study by eliminating the need for external pumps/tubing and reducing the volume of solution consumption, but it also achieves a higher analytical spatiotemporal resolution due to efficient flow exchanges and the extremely small volume of solutions required. Overall, the microfluidic platform presented can be used as a potential powerful tool for understanding islet physiology, antidiabetic drug development, and islet transplantation.


Asunto(s)
Islotes Pancreáticos/citología , Dispositivos Laboratorio en un Chip , Animales , Simulación por Computador , Diseño de Equipo , Humanos , Hidrodinámica , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Imagen Óptica , Resistencia al Corte , Estrés Mecánico , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA