Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Adv Sci (Weinh) ; 8(5): 2001100, 2021 Mar.
Article En | MEDLINE | ID: mdl-33717833

The generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGFß signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.

3.
J Exp Med ; 217(12)2020 12 07.
Article En | MEDLINE | ID: mdl-32845958

Failure of neural tube closure during embryonic development can result in anencephaly, one of the most common birth defects in humans. A family with recurrent anencephalic fetuses was investigated to understand its etiology and pathogenesis. Exome sequencing revealed a recessive germline 21-bp in-frame deletion in NUAK2 segregating with the disease. In vitro kinase assays demonstrated that the 7-amino acid truncation in NUAK2, a serine/threonine kinase, completely abrogated its catalytic activity. Patient-derived disease models including neural progenitor cells and cerebral organoids showed that loss of NUAK2 activity led to decreased Hippo signaling via cytoplasmic YAP retention. In neural tube-like structures, endogenous NUAK2 colocalized apically with the actomyosin network, which was disrupted in patient cells, causing impaired nucleokinesis and apical constriction. Our results establish NUAK2 as an indispensable kinase for brain development in humans and suggest that a NUAK2-Hippo signaling axis regulates cytoskeletal processes that govern cell shape during neural tube closure.


Adaptor Proteins, Signal Transducing/metabolism , Anencephaly/genetics , Loss of Function Mutation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Actins/metabolism , Actomyosin/metabolism , Amino Acid Sequence , Base Sequence , Cell Aggregation , Consanguinity , Down-Regulation/genetics , Female , Fetus/pathology , Genes, Recessive , Hippo Signaling Pathway , Humans , Male , Neural Stem Cells/metabolism , Neural Tube/pathology , Organoids/pathology , Pedigree , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Signal Transduction , Transcription, Genetic , Turkey , YAP-Signaling Proteins
4.
Cell Metab ; 20(4): 687-95, 2014 Oct 07.
Article En | MEDLINE | ID: mdl-25295789

Inhibition of ceramide synthesis prevents diabetes, steatosis, and cardiovascular disease in rodents. Six different ceramide synthases (CerS) that differ in tissue distribution and substrate specificity account for the diversity in acyl-chain composition of distinct ceramide species. Haploinsufficiency for ceramide synthase 2 (CerS2), the dominant isoform in the liver that preferentially makes very-long-chain (C22/C24/C24:1) ceramides, led to compensatory increases in long-chain C16-ceramides and conferred susceptibility to diet-induced steatohepatitis and insulin resistance. Mechanistic studies revealed that these metabolic effects were likely due to impaired ß-oxidation resulting from inactivation of electron transport chain components. Inhibiting global ceramide synthesis negated the effects of CerS2 haploinsufficiency in vivo, and increasing C16-ceramides by overexpressing CerS6 recapitulated the phenotype in isolated, primary hepatocytes. Collectively, these studies reveal that altering sphingolipid acylation patterns impacts hepatic steatosis and insulin sensitivity and identify CerS6 as a possible therapeutic target for treating metabolic diseases associated with obesity.


Diet, High-Fat , Insulin Resistance , Sphingosine N-Acyltransferase/metabolism , Animals , Body Weight/drug effects , Cells, Cultured , Ceramides/metabolism , Cholesterol, VLDL/blood , Electron Transport Chain Complex Proteins/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/therapeutic use , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Heterozygote , Humans , Lipid Peroxidation , Liver/metabolism , Mice , PPAR gamma/metabolism , Proteins/genetics , Proteins/metabolism , RNA, Messenger/metabolism , Sphingosine N-Acyltransferase/genetics
...