Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 23(17): 22544-52, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26368221

RESUMEN

In this paper, we applied the Fourier Transformation as a notion to calculate the orientation of hexagonal graphene domains on Cu substrate. We developed that a hexagon function to describe the diffraction pattern of hexagonal graphene. Hexagonal graphene domains grown on Cu (111) has an average value of orientation surrounding 3° in the frequency domain. For transparent conducting electrode applications, optical and electrical properties of large-area graphene film (2cm(2)) was measured. The results demonstrate that graphene grown on Cu (111) was greater than graphene grown on polycrystalline Cu.

2.
Nanoscale Res Lett ; 9(1): 581, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25364316

RESUMEN

An approximate growth model was employed to predict the time required to grow a graphene film by chemical vapor deposition (CVD). Monolayer graphene films were synthesized on Cu foil at various hydrogen flow rates from 10 to 50 sccm. The sheet resistance of the graphene film was 310Ω/□ and the optical transmittance was 97.7%. The Raman intensity ratio of the G-peak to the 2D peak of the graphene film was as high as ~4 when the hydrogen flow rate was 30 sccm. The fitting curve obtained by the deviation equation of growth model closely matches the data. We believe that under the same conditions and with the same setup, the presented growth model can help manufacturers and academics to predict graphene growth time more accurately.

3.
Appl Opt ; 53(4): A148-53, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24514207

RESUMEN

Fluorine-doped tin oxide (FTO) films were prepared by pulsed DC magnetron sputtering with a metal Sn target. Two different modes were applied to deposit the FTO films, and their respective optical and electrical properties were evaluated. In the transition mode, the minimum resistivity of the FTO film was 1.63×10(-3) Ω cm with average transmittance of 80.0% in the visible region. Furthermore, FTO films deposited in the oxide mode and mixed simultaneously with H2 could achieve even lower resistivity to 8.42×10(-4) Ω cm and higher average transmittance up to 81.1% in the visible region.

4.
Appl Opt ; 53(4): A237-41, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24514221

RESUMEN

In this study, a controllable photonic mirror was fabricated using the atomic layer deposition (ALD) coating technique on a polystyrene (PS) nanosphere template. PS nanospheres were self-assembled on an Al/glass substrate to form the bottom electrode. A 20 nm ALD Al2O3 film was then coated onto the surface of the reduced PS nanosphere structure. The PS nanospheres were removed in air at 350°C to form hollow Al2O3 nanospheres. Then a 30 nm indium tin oxide film was sputtered on the hollow nanosphere structure to form the top electrode. The results show that the incorporation of the photonic mirror could control the reflectance to a value of 0.3% per 0.1 V of bias voltage.

5.
Nanoscale Res Lett ; 8(1): 285, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23758668

RESUMEN

Plasma-assisted thermal chemical vapor deposition (CVD) was carried out to synthesize high-quality graphene film at a low temperature of 600°C. Monolayer graphene films were thus synthesized on Cu foil using various ratios of hydrogen and methane in a gaseous mixture. The in situ plasma emission spectrum was measured to elucidate the mechanism of graphene growth in a plasma-assisted thermal CVD system. According to this process, a distance must be maintained between the plasma initial stage and the deposition stage to allow the plasma to diffuse to the substrate. Raman spectra revealed that a higher hydrogen concentration promoted the synthesis of a high-quality graphene film. The results demonstrate that plasma-assisted thermal CVD is a low-cost and effective way to synthesis high-quality graphene films at low temperature for graphene-based applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA