Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 8(Pt 3): 431-443, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33953929

RESUMEN

Photosystem II (PSII) catalyzes light-induced water oxidation through an S i -state cycle, leading to the generation of di-oxygen, protons and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S1-to-S2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S1-to-S2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.

2.
Nat Commun ; 10(1): 4929, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666526

RESUMEN

Photosystem I (PSI) functions to harvest light energy for conversion into chemical energy. The organisation of PSI is variable depending on the species of organism. Here we report the structure of a tetrameric PSI core isolated from a cyanobacterium, Anabaena sp. PCC 7120, analysed by single-particle cryo-electron microscopy (cryo-EM) at 3.3 Å resolution. The PSI tetramer has a C2 symmetry and is organised in a dimer of dimers form. The structure reveals interactions at the dimer-dimer interface and the existence of characteristic pigment orientations and inter-pigment distances within the dimer units that are important for unique excitation energy transfer. In particular, characteristic residues of PsaL are identified to be responsible for the formation of the tetramer. Time-resolved fluorescence analyses showed that the PSI tetramer has an enhanced excitation-energy quenching. These structural and spectroscopic findings provide insights into the physiological significance of the PSI tetramer and evolutionary changes of the PSI organisations.


Asunto(s)
Anabaena/metabolismo , Complejo de Proteína del Fotosistema I/ultraestructura , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína , Imagen Individual de Molécula , Espectrometría de Fluorescencia
3.
BMC Pulm Med ; 19(1): 162, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455270

RESUMEN

BACKGROUND: To compare the microbiological culture within endotracheal aspirate specimens (ETAs) and endotracheal tube specimens (ETTs) in patients undergoing mechanical ventilation (MV) by statistical tools. METHOD: ETAs and ETTs from a total number of 81 patients, who were undergoing MV at the intensive care unit (ICU) of Jiading Central Hospital Affiliated Shanghai University of Medicine & Health Sciences from September 1st, 2017 to August 31st, 2018, were collected for microbiological culture analysis. Correlation of ETAs and ETTs cultures were obtained by Spear-men correlation analysis, while the consistency of the two specimens was determined by Kappa analysis and principal component analysis (PCA). RESULTS: Microbiological culture from both ETAs and ETTs showed that Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were the main pathogens, with Spear-man correlation coefficients of 0.676, 0.951, 0.730 and 0.687 respectively (all P < 0.01), and the overall Spear-man correlation coefficient is 0.757 (P < 0.01). This result shows that two samples were positively correlated. Kappa analysis also revealed high consistency of the microbial culture results from the ETAs and the ETTs (overall κ = 0.751, P < 0.01). The κ values for the four bacteria detected were 0.670, 0.949, 0.723, and 0.687, respectively (all P < 0.001). PCA also revealed high similarity. CONCLUSION: Combining microbiological culture and statistical analysis of samples collected from 81 patients who were undergoing MV in ICU, we showed that microbe found in the ETAs had high similarity with that found in the ETTs which collected at the end of the catheters. In clinical practice, ETAs analysis is easily accessible meanwhile provides a valuable information for MV patients.


Asunto(s)
Biopelículas , Contaminación de Equipos , Intubación Intratraqueal/efectos adversos , Respiración Artificial/efectos adversos , Infecciones del Sistema Respiratorio/etiología , Tráquea/microbiología , Adulto , Anciano , Anciano de 80 o más Años , China , Recuento de Colonia Microbiana , Femenino , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Infecciones del Sistema Respiratorio/mortalidad
4.
Biochemistry ; 57(41): 6013-6026, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30211543

RESUMEN

The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by ∼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) → K → L1a ↔ L1b ↔ N ↔ N' ↔ O' ↔ csHR' ↔ taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.


Asunto(s)
Halobacteriaceae/química , Halorrodopsinas/química , Retinaldehído/química , Estereoisomerismo
5.
Biochemistry ; 55(29): 4092-104, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27352034

RESUMEN

Like other microbial rhodopsins, the light driven chloride pump halorhodopsin from Natronomonas pharaonis (pHR) contains a mixture of all-trans/15-anti and 13-cis/15-syn isomers in the dark adapted state. A recent crystallographic study of the reaction states of pHR has shown that reaction states with 13-cis/15-syn retinal occur in the anion pumping cycle that is initiated by excitation of the all-trans isomer. In this study, we investigated interconversions among different isomeric states of pHR in the absence of chloride ions. The illumination of chloride free pHR with red light caused a large blue shift in the absorption maximum of the retinal visible band. During this "red adaptation", the content of the 11-cis isomer increased significantly, while the molar ratio of the 13-cis isomer to the all-trans isomer remained unchanged. The results suggest that the thermally activated interconversion between the 13-cis and the all-trans isomers is very rapid. Diffraction data from red adapted crystals showed that accommodation of the retinal chromophore with the 11-cis/15-syn configuration was achieved without a large change in the retinal binding pocket. The measurement of absorption kinetics under illumination showed that the 11-cis isomer, with a λmax at 565 nm, was generated upon excitation of a red-shifted species (λmax = 625 nm) that was present as a minor component in the dark adapted state. It is possible that this red-shifted species mimics an O-like reaction state with 13-cis/15-syn retinal, which was hypothesized to occur at a late stage of the anion pumping cycle.


Asunto(s)
Halobacteriaceae/química , Halorrodopsinas/química , Cristalografía por Rayos X , Halobacteriaceae/metabolismo , Halobacteriaceae/efectos de la radiación , Halorrodopsinas/metabolismo , Halorrodopsinas/efectos de la radiación , Cinética , Luz , Modelos Moleculares , Procesos Fotoquímicos , Conformación Proteica , Espectrofotometría , Estereoisomerismo
6.
PLoS One ; 9(9): e108362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268964

RESUMEN

Cruxrhodopsin-3 (cR3), a retinylidene protein found in the claret membrane of Haloarcula vallismortis, functions as a light-driven proton pump. In this study, the membrane fusion method was applied to crystallize cR3 into a crystal belonging to space group P321. Diffraction data at 2.1 Å resolution show that cR3 forms a trimeric assembly with bacterioruberin bound to the crevice between neighboring subunits. Although the structure of the proton-release pathway is conserved among proton-pumping archaeal rhodopsins, cR3 possesses the following peculiar structural features: 1) The DE loop is long enough to interact with a neighboring subunit, strengthening the trimeric assembly; 2) Three positive charges are distributed at the cytoplasmic end of helix F, affecting the higher order structure of cR3; 3) The cytoplasmic vicinity of retinal is more rigid in cR3 than in bacteriorhodopsin, affecting the early reaction step in the proton-pumping cycle; 4) the cytoplasmic part of helix E is greatly bent, influencing the proton uptake process. Meanwhile, it was observed that the photobleaching of retinal, which scarcely occurred in the membrane state, became significant when the trimeric assembly of cR3 was dissociated into monomers in the presence of an excess amount of detergent. On the basis of these observations, we discuss structural factors affecting the photostabilities of ion-pumping rhodopsins.


Asunto(s)
Haloarcula/química , Subunidades de Proteína/química , Bombas de Protones/química , Rodopsinas Microbianas/química , Secuencia de Aminoácidos , Cristalización/métodos , Cristalografía por Rayos X , Expresión Génica , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Luz , Fusión de Membrana , Datos de Secuencia Molecular , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Bombas de Protones/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rodopsinas Microbianas/genética , Electricidad Estática , Difracción de Rayos X
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2692-701, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286853

RESUMEN

Archaerhodopsin-2 (aR2), the sole protein found in the claret membrane of Halorubrum sp. Aus-2, functions as a light-driven proton pump. In this study, structural analysis of aR2 was performed using a novel three-dimensional crystal prepared by the successive fusion of claret membranes. The crystal is made up of stacked membranes, in each of which aR2 trimers are arranged on a hexagonal lattice. This lattice structure resembles that found in the purple membrane of H. salinarum, except that lipid molecules trapped within the trimeric structure are not distributed with perfect threefold symmetry. Nonetheless, diffraction data at 1.8 Šresolution provide accurate structural information about functionally important residues. It is shown that two glutamates in the proton-release channel form a paired structure that is maintained by a low-barrier hydrogen bond. Although the structure of the proton-release pathway is highly conserved among proton-pumping archaeal rhodopsins, aR2 possesses the following peculiar structural features: (i) the motional freedom of the tryptophan residue that makes contact with the C13 methyl group of retinal is restricted, affecting the formation/decay kinetics of the L state, and (ii) the N-terminal polypeptide folds into an Ω-loop, which may play a role in organizing the higher-order structure.


Asunto(s)
Halobacterium/química , Rodopsinas Microbianas/química , Cristalización , Cristalografía por Rayos X , Ácido Glutámico/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Bombas de Protones/química , Rodopsinas Microbianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...