Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomed Pharmacother ; 145: 112440, 2022 Jan.
Article En | MEDLINE | ID: mdl-34839254

In this study, we investigated whether the activating transcription factor 3 (ATF3) inducer ST32db, a synthetic compound with a chemical structure similar to that of native Danshen compounds, exerts an anti-obesity effect in 3T3-L1 white preadipocytes, D16 beige cells, and mice with obesity induced by a high-fat diet (HFD). The results showed that ST32db inhibited 3T3-L1 preadipocyte differentiation by inhibiting adipogenesis/lipogenesis-related gene (and protein levels) and enhancing lipolysis-related gene (and protein levels) via the activation of ß3-adrenoceptor (ß3-AR)/PKA/p38, AMPK, and ERK pathways. Furthermore, ST32db inhibited triacylglycerol accumulation in D16 adipocytes by suppressing adipogenesis/lipogenesis-related gene (and protein levels) and upregulating browning gene expression by suppressing the ß3-AR/PKA/p38, and AMPK pathways. Intraperitoneally injected ST32db (1 mg kg-1 twice weekly) inhibited body weight gain and reduced the weight of inguinal white adipose tissue (iWAT), epididymal WAT (eWAT), and mesenteric WAT, with no effects on food intake by the obese mice. The adipocyte diameter and area of iWAT and eWAT were decreased in obese mice injected with ST32db compared with those administered only HFD. In addition, ST32db significantly suppressed adipogenesis and activated lipolysis, browning, mitochondrial oxidative phosphorylation, and ß-oxidation-related pathways by suppressing the p38 pathway in the iWAT of the obese mice. These results indicated that the ATF3 inducer ST32db has therapeutic potential for reducing obesity.


Activating Transcription Factor 3 , Anti-Obesity Agents , Obesity , Animals , Male , Mice , 3T3-L1 Cells , Activating Transcription Factor 3/drug effects , Activating Transcription Factor 3/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Anti-Obesity Agents/pharmacology , Cell Differentiation/drug effects , Diet, High-Fat/adverse effects , Lipolysis/drug effects , Mice, Inbred C57BL , Obesity/drug therapy , Weight Gain/drug effects
2.
PLoS One ; 13(7): e0200508, 2018.
Article En | MEDLINE | ID: mdl-30011295

The present study was designed to investigate the pathways involved in the effect of betel nut arecoline on cell viability in 3T3-L1 preadipocytes. Arecoline, but not arecaidine or guvacine, inhibited preadipocyte viability in a concentration- and time-dependent manner. Arecoline arrested preadipocyte growth in the G2/M phase of the cell cycle; decreased the total levels of cyclin-dependent kinase 1 (CDK1), p21, and p27 proteins; increased p53 and cyclin B1 protein levels; and had no effect on CDK2 protein levels. These results suggested that arecoline selectively affected a particular CDK subfamily. Arecoline inhibited AMP-activated protein kinase (AMPK) activity; conversely, the AMPK activator, AICAR, blocked the arecoline-induced inhibition of cell viability. Pre-treatment with the antioxidant, N-acetylcysteine, prevented the actions of arecoline on cell viability, G2/M growth arrest, reactive oxygen species (ROS) production, and the levels of CDK1, p21, p27, p53, cyclin B1, and phospho-AMPK proteins. These AMPK- and ROS-dependent effects of arecoline on preadipocyte growth may be related to the mechanism underlying the modulatory effect of arecoline on body weight.


AMP-Activated Protein Kinases/metabolism , Adipocytes/metabolism , Arecoline/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Animals , Cell Cycle Proteins/biosynthesis , Gene Expression Regulation/drug effects , Mice
...