Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Pathol ; 263(2): 150-165, 2024 Jun.
Article En | MEDLINE | ID: mdl-38551513

While there is a great clinical need to understand the biology of metastatic cancer in order to treat it more effectively, research is hampered by limited sample availability. Research autopsy programmes can crucially advance the field through synchronous, extensive, and high-volume sample collection. However, it remains an underused strategy in translational research. Via an extensive questionnaire, we collected information on the study design, enrolment strategy, study conduct, sample and data management, and challenges and opportunities of research autopsy programmes in oncology worldwide. Fourteen programmes participated in this study. Eight programmes operated 24 h/7 days, resulting in a lower median postmortem interval (time between death and start of the autopsy, 4 h) compared with those operating during working hours (9 h). Most programmes (n = 10) succeeded in collecting all samples within a median of 12 h after death. A large number of tumour sites were sampled during each autopsy (median 15.5 per patient). The median number of samples collected per patient was 58, including different processing methods for tumour samples but also non-tumour tissues and liquid biopsies. Unique biological insights derived from these samples included metastatic progression, treatment resistance, disease heterogeneity, tumour dormancy, interactions with the tumour micro-environment, and tumour representation in liquid biopsies. Tumour patient-derived xenograft (PDX) or organoid (PDO) models were additionally established, allowing for drug discovery and treatment sensitivity assays. Apart from the opportunities and achievements, we also present the challenges related with postmortem sample collections and strategies to overcome them, based on the shared experience of these 14 programmes. Through this work, we hope to increase the transparency of postmortem tissue donation, to encourage and aid the creation of new programmes, and to foster collaborations on these unique sample collections. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Autopsy , Medical Oncology , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/mortality , Medical Oncology/methods , Animals , Translational Research, Biomedical
2.
bioRxiv ; 2023 May 20.
Article En | MEDLINE | ID: mdl-37292765

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

...