Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunometabolism (Cobham) ; 6(2): e00042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38693938

RESUMEN

Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.

2.
Proc Natl Acad Sci U S A ; 121(1): e2315865120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147552

RESUMEN

To define cellular immunity to the intracellular pathogen Toxoplasma gondii, we performed a genome-wide CRISPR loss-of-function screen to identify genes important for (interferon gamma) IFN-γ-dependent growth restriction. We revealed a role for the tumor suppressor NF2/Merlin for maximum induction of Interferon Stimulated Genes (ISG), which are positively regulated by the transcription factor IRF-1. We then performed an ISG-targeted CRISPR screen that identified the host E3 ubiquitin ligase RNF213 as necessary for IFN-γ-mediated control of T. gondii in multiple human cell types. RNF213 was also important for control of bacterial (Mycobacterium tuberculosis) and viral (Vesicular Stomatitis Virus) pathogens in human cells. RNF213-mediated ubiquitination of the parasitophorous vacuole membrane (PVM) led to growth restriction of T. gondii in response to IFN-γ. Moreover, overexpression of RNF213 in naive cells also impaired growth of T. gondii. Surprisingly, growth inhibition did not require the autophagy protein ATG5, indicating that RNF213 initiates restriction independent of a previously described noncanonical autophagy pathway. Mutational analysis revealed that the ATPase domain of RNF213 was required for its recruitment to the PVM, while loss of a critical histidine in the RZ finger domain resulted in partial reduction of recruitment to the PVM and complete loss of ubiquitination. Both RNF213 mutants lost the ability to restrict growth of T. gondii, indicating that both recruitment and ubiquitination are required. Collectively, our findings establish RNF213 as a critical component of cell-autonomous immunity that is both necessary and sufficient for control of intracellular pathogens in human cells.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Interferón gamma/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Toxoplasma/metabolismo , Factores de Transcripción , Adenosina Trifosfatasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Rev Microbiol ; 20(12): 750-766, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35879556

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Evasión Inmune , Tuberculosis/microbiología , Macrófagos/microbiología , Factores de Virulencia/metabolismo
4.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104812

RESUMEN

Mycobacterium tuberculosis (M. tuberculosis) causes an enormous burden of disease worldwide. As a central aspect of its pathogenesis, M. tuberculosis grows in macrophages, and host and microbe influence each other's metabolism. To define the metabolic impact of M. tuberculosis infection, we performed global metabolic profiling of M. tuberculosis-infected macrophages. M. tuberculosis induced metabolic hallmarks of inflammatory macrophages and a prominent signature of cholesterol metabolism. We found that infected macrophages accumulate cholestenone, a mycobacterial-derived, oxidized derivative of cholesterol. We demonstrated that the accumulation of cholestenone in infected macrophages depended on the M. tuberculosis enzyme 3ß-hydroxysteroid dehydrogenase (3ß-Hsd) and correlated with pathogen burden. Because cholestenone is not a substantial human metabolite, we hypothesized it might be diagnostic of M. tuberculosis infection in clinical samples. Indeed, in 2 geographically distinct cohorts, sputum cholestenone levels distinguished subjects with tuberculosis (TB) from TB-negative controls who presented with TB-like symptoms. We also found country-specific detection of cholestenone in plasma samples from M. tuberculosis-infected subjects. While cholestenone was previously thought to be an intermediate required for cholesterol degradation by M. tuberculosis, we found that M. tuberculosis can utilize cholesterol for growth without making cholestenone. Thus, the accumulation of cholestenone in clinical samples suggests it has an alternative role in pathogenesis and could be a clinically useful biomarker of TB infection.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/metabolismo , Metabolómica , Mycobacterium tuberculosis/fisiología , Transducción de Señal , Tuberculosis/metabolismo , Animales , Humanos , Macrófagos/microbiología , Ratones
5.
Proc Natl Acad Sci U S A ; 117(52): 33561-33569, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376222

RESUMEN

Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.


Asunto(s)
Envejecimiento/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fagocitosis , Streptococcus pneumoniae/inmunología , Animales , Autofagia , Proteínas Bacterianas/metabolismo , Lípidos/química , Macrófagos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Viabilidad Microbiana , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Streptococcus pneumoniae/ultraestructura , Estreptolisinas/metabolismo
6.
Cell Rep ; 33(5): 108339, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147451

RESUMEN

Here, we report our studies of immune-mediated regulation of Zika virus (ZIKV), herpes simplex virus 1 (HSV-1), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the human cornea. We find that ZIKV can be transmitted via corneal transplantation in mice. However, in human corneal explants, we report that ZIKV does not replicate efficiently and that SARS-CoV-2 does not replicate at all. Additionally, we demonstrate that type III interferon (IFN-λ) and its receptor (IFNλR1) are expressed in the corneal epithelium. Treatment of human corneal explants with IFN-λ, and treatment of mice with IFN-λ eye drops, upregulates antiviral interferon-stimulated genes. In human corneal explants, blockade of IFNλR1 enhances replication of ZIKV and HSV-1 but not SARS-CoV-2. In addition to an antiviral role for IFNλR1 in the cornea, our results suggest that the human cornea does not support SARS-CoV-2 infection despite expression of ACE2, a SARS-CoV-2 receptor, in the human corneal epithelium.


Asunto(s)
Betacoronavirus/fisiología , Córnea/virología , Infecciones por Coronavirus/transmisión , Herpesvirus Humano 1/fisiología , Interferones/inmunología , Neumonía Viral/transmisión , Virus Zika/fisiología , Animales , Betacoronavirus/inmunología , COVID-19 , Córnea/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Herpes Simple/inmunología , Herpes Simple/transmisión , Herpes Simple/virología , Humanos , Ratones , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Replicación Viral/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Interferón lambda
7.
mBio ; 11(4)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636249

RESUMEN

Macrophage activation involves metabolic reprogramming to support antimicrobial cellular functions. How these metabolic shifts influence the outcome of infection by intracellular pathogens remains incompletely understood. Mycobacterium tuberculosis (Mtb) modulates host metabolic pathways and utilizes host nutrients, including cholesterol and fatty acids, to survive within macrophages. We found that intracellular growth of Mtb depends on host fatty acid catabolism: when host fatty acid ß-oxidation (FAO) was blocked chemically with trimetazidine, a compound in clinical use, or genetically by deletion of the mitochondrial fatty acid transporter carnitine palmitoyltransferase 2 (CPT2), Mtb failed to grow in macrophages, and its growth was attenuated in mice. Mechanistic studies support a model in which inhibition of FAO generates mitochondrial reactive oxygen species, which enhance macrophage NADPH oxidase and xenophagy activity to better control Mtb infection. Thus, FAO inhibition promotes key antimicrobial functions of macrophages and overcomes immune evasion mechanisms of Mtb.IMPORTANCEMycobacterium tuberculosis (Mtb) is the leading infectious disease killer worldwide. We discovered that intracellular Mtb fails to grow in macrophages in which fatty acid ß-oxidation (FAO) is blocked. Macrophages treated with FAO inhibitors rapidly generate a burst of mitochondria-derived reactive oxygen species, which promotes NADPH oxidase recruitment and autophagy to limit the growth of Mtb. Furthermore, we demonstrate the ability of trimetazidine to reduce pathogen burden in mice infected with Mtb. These studies will add to the knowledge of how host metabolism modulates Mtb infection outcomes.


Asunto(s)
Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Oxidación-Reducción/efectos de los fármacos , Animales , Antituberculosos/farmacología , Células Cultivadas , Citocinas/análisis , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Trimetazidina/farmacología , Tuberculosis/microbiología
8.
Bio Protoc ; 8(10): e2857, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285974

RESUMEN

Macrophages are immune cells that contribute to host defense through various mechanisms including phagocytosis and antigen presentation. Their antimicrobial capacity is subverted by clinically important intracellular pathogens such as Mycobacterium tuberculosis. The study of host-pathogen interactions using these cells is therefore of considerable interest. Such studies often seek to express tagged proteins to characterize their activities, localizations, and protein-protein interactions. Here, we describe a robust method for transient protein expression in macrophages using mRNA lipoplex transfections.

9.
Proc Natl Acad Sci U S A ; 114(41): E8711-E8720, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973896

RESUMEN

Mycobacterium tuberculosis' success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called "LC3-associated phagocytosis" (LAP). Although Mtuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substantially contribute to Mtuberculosis control. LAP depends upon reactive oxygen species (ROS) generated by NADPH oxidase, but Mtuberculosis fails to generate a robust oxidative response. Here, we show that CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein, is required for Mtuberculosis to evade killing by NADPH oxidase and LAP. Unlike phagosomes containing wild-type bacilli, phagosomes containing the ΔcpsA mutant recruited NADPH oxidase, produced ROS, associated with LC3, and matured into antibacterial lysosomes. Moreover, CpsA was sufficient to impair NADPH oxidase recruitment to fungal particles that are normally cleared by LAP. Intracellular survival of the ΔcpsA mutant was largely restored in macrophages missing LAP components (Nox2, Rubicon, Beclin, Atg5, Atg7, or Atg16L1) but not in macrophages defective in a related, canonical autophagy pathway (Atg14, Ulk1, or cGAS). The ΔcpsA mutant was highly impaired in vivo, and its growth was partially restored in mice deficient in NADPH oxidase, Atg5, or Atg7, demonstrating that CpsA makes a significant contribution to the resistance of Mtuberculosis to NADPH oxidase and LC3 trafficking in vivo. Overall, our findings reveal an essential role of CpsA in innate immune evasion and suggest that LCP proteins have functions beyond their previously known role in cell-wall metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrófagos/inmunología , Proteínas Asociadas a Microtúbulos/fisiología , NADPH Oxidasa 2/fisiología , Fagocitosis/fisiología , Tuberculosis/prevención & control , Animales , Autofagia , Proteínas Bacterianas/genética , Femenino , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico Sintasa de Tipo II/fisiología , Fagosomas , Especies Reactivas de Oxígeno/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología
10.
mSphere ; 1(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303736

RESUMEN

In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a host factor exploited by virulent M. tuberculosis for intracellular survival. We show that Src inhibition can effectively control tuberculosis in infected guinea pigs. Moreover, Src inhibition ameliorated TB-associated pathology in guinea pigs. Thus, Src inhibitors have strong potential to be developed as possible anti-TB drugs.

11.
Autophagy ; 12(3): 608-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27046255

RESUMEN

Induction of autophagy has been reported as a potential means to eliminate intracellular pathogens. Corroborating that, many studies report inhibition of autophagy as a survival strategy of bacterial pathogens. Incidentally, autophagy at the basal level is critical for survival of host cells including macrophages. We asked how a bacterial pathogen could inhibit autophagy for its survival if the inhibition resulted in cell death. In a recent study we show distinct regulation of autophagy in Mycobacterium tuberculosis (Mtb)-infected macrophages where Mtb-containing- and nonMtb-containing autophagosomes show different fates in terms of maturation. We show that upon Mtb infection, there is no dramatic change in the autophagy flux in macrophages. However, autophagosomes that contain the virulent strains of Mtb show selective resilience to the maturation phase of autophagy. Surprisingly, nonMtb-containing autophagosomes in the infected cells continue to mature into autolysosomes. The block in the xenophagy flux is missing in the case of avirulant infections. We show that this selectivity is achieved through selective exclusion of RAB7 from virulent Mtb-containing autophagosomes, thereby restricting the formation of amphisomes.


Asunto(s)
Autofagia , Macrófagos/microbiología , Macrófagos/patología , Mycobacterium tuberculosis/fisiología , Animales , Humanos , Viabilidad Microbiana , Modelos Biológicos , Mycobacterium tuberculosis/patogenicidad , Virulencia
12.
Sci Rep ; 5: 16320, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541268

RESUMEN

Here we report a novel regulatory mechanism for autophagy-mediated degradation of Mycobacterium tuberculosis (Mtb) and specific strategy exploited by the virulent Mtb to evade it. We show while both avirulent (H37Ra) and virulent (H37Rv) mycobacteria could readily localize to autophagosomes, their maturation into autolysosomes (flux) was significantly inhibited by the latter strain. The inhibition of autophagy flux by the virulent strain was highly selective, as it did not perturb the basal autophagy flux in the macrophages. Selective inhibition of flux of Mtb-containing autophagosomes required virulence regulators PhoP and ESAT-6. We show that the maturation of Mtb-containing autophagosomes into autolysosomes required recruitment of the late endosome marker RAB7, forming the intermediate compartment amphisomes. Virulent Mtb selectively evaded their targeting to the amphisomes. Thus we report a crosstalk between autophagy and phagosome maturation pathway and highlight the adaptability of Mtb, manifested by selective regulation of autophagy flux.


Asunto(s)
Autofagia , Mycobacterium tuberculosis/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Humanos , Mycobacterium tuberculosis/patogenicidad , Virulencia , Proteínas de Unión a GTP rab7
13.
PLoS Pathog ; 10(1): e1003902, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497832

RESUMEN

Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH ) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH , suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.


Asunto(s)
Cisteína/metabolismo , Glicopéptidos/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Inositol/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Tuberculosis/metabolismo , Línea Celular Tumoral , Cisteína/genética , Glicopéptidos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inositol/genética , Macrófagos/metabolismo , Macrófagos/patología , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Ingeniería de Proteínas , Tuberculosis/genética , Tuberculosis/patología
14.
J Biol Chem ; 286(46): 40307-19, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21953458

RESUMEN

Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Familia-src Quinasas/metabolismo , Autofagia , Línea Celular , Humanos , Macrófagos/microbiología
15.
J Biol Chem ; 286(21): 18982-93, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21471199

RESUMEN

Glycosaminoglycans (GAGs) expressed ubiquitously on the cell surface are known to interact with a variety of ligands to mediate different cellular processes. However, their role in the internalization of cationic gene delivery vectors such as liposomes, polymers, and peptides is still ambiguous and seems to be controlled by multiple factors. In this report, taking peptides as model systems, we show that peptide chemistry is one of the key factors that determine the dependence on cell surface glycosaminoglycans for cellular internalization and gene delivery. Arginine peptides and their complexes with plasmid DNA show efficient uptake and functional gene transfer independent of the cell surface GAGs. On the other hand, lysine peptides and complexes primarily enter through a GAG-dependent pathway. The peptide-DNA complexes also show differential interaction with soluble GAGs. In the presence of exogenous GAGs under certain conditions, arginine peptide-DNA complexes show increased transfection efficiency that is not observed with lysine. This is attributed to a change in the complex nature that ensures better protection of the compacted DNA in the case of arginine complexes, whereas the lysine complexes get destabilized under these conditions. The presence of a GAG coating also ensures better cell association of arginine complexes, resulting in increased uptake. Our results indicate that the role of both the cell surface and exogenous glycosaminoglycans in gene delivery is controlled by the nature of the peptide and its complex with DNA.


Asunto(s)
Arginina/química , ADN/química , Técnicas de Transferencia de Gen , Glicosaminoglicanos/química , Lisina/química , Oligopéptidos/química , Plásmidos/química , Animales , Células CHO , Cricetinae , Cricetulus , ADN/genética , Vectores Genéticos/química , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...