Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 73: 103143, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38754271

RESUMEN

BACKGROUND: Our previous studies have shown that lipoxin A4 (LXA4) can serve as a potential biomarker for assessing the efficacy of exercise therapy in knee osteoarthritis (KOA), and fibroblast-like synoviocytes (FLSs) may play a crucial role in KOA pain as well as in the progression of the pathology. OBJECTIVE: By analyzing the GSE29746 dataset and collecting synovial samples from patients with different Kellgren-Lawrence (KL) grades for validation, we focused on exploring the potential effect of LXA4 on ferroptosis in FLSs through the ESR2/LPAR3/Nrf2 axis to alleviate pain and pathological advancement in KOA. METHODS: The association between FLSs ferroptosis and chondrocyte matrix degradation was explored by cell co-culture. We overexpressed and knocked down LPAR3 in vitro to explore its potential mechanism in FLSs. A rat model of monosodium iodoacetate (MIA)-induced KOA was constructed and intervened with moderate-intensity treadmill exercise and intraperitoneal injection of PHTPP to investigate the effects of the LXA4 intracellular receptor ESR2 on exercise therapy. RESULTS: ESR2, LPAR3, and GPX4 levels in the synovium decreased with increasing KL grade. After LXA4 intervention in the co-culture system, GPX4, LPAR3, and ESR2 were upregulated in FLSs, collagen II was upregulated in chondrocytes, and MMP3 and ADAM9 were downregulated. LPAR3 overexpression upregulated the expression of GPX4, Nrf2, and SOD1 in FLSs, while downregulating the expression of MMP13 and MMP3; LPAR3 knockdown reversed these changes. Moderate-intensity platform training improved the behavioral manifestations of pain in KOA rats, whereas PHTPP treatment partially reversed the improvement in synovial and cartilage pathologies induced by platform training. CONCLUSION: LXA4 inhibited FLSs ferroptosis by activating the ESR2/LPAR3/Nrf2 axis, thereby alleviating the pain and pathological progression of KOA. This study brings a new target for the treatment of KOA and also leads to a deeper understanding of the potential mechanisms of exercise therapy for KOA.


Asunto(s)
Ferroptosis , Lipoxinas , Factor 2 Relacionado con NF-E2 , Osteoartritis de la Rodilla , Sinoviocitos , Animales , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/patología , Ratas , Lipoxinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sinoviocitos/metabolismo , Humanos , Masculino , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Transducción de Señal , Ratas Sprague-Dawley , Membrana Sinovial/metabolismo , Progresión de la Enfermedad
2.
J Transl Med ; 21(1): 661, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741987

RESUMEN

BACKGROUND: The prevention and treatment of osteoarthritis (OA) pose a major challenge in its research. The synovium is a critical tissue in the systematic treatment of OA. The present study aimed to investigate potential target genes and their correlation with iron overload in OA patients. METHODS: The internal datasets for analysis included the microarray datasets GSE46750, GSE55457, and GSE56409, while the external datasets for validation included GSE12021 and GSE55235. The GSE176308 dataset was used to generate single-cell RNA sequencing profiles. To investigate the expression of the target genes in synovial samples, quantitative reverse transcription-PCR, western blotting, and immunohistochemical assay were conducted. ELISA was used to detect the levels of ferritin and Fe2+ in both serum and synovium. RESULTS: JUN and ZFP36 were screened from the differentially expressed genes, and their mRNA were significantly reduced in the OA synovium compared to that in normal synovium. Subsequently, complex and dynamically evolving cellular components were observed in the OA synovium. The mRNA level of JUN and ZFP36 differed across various cell clusters of OA synovium and correlated with immune cell infiltration. Moreover, ferritin and Fe2+ were significantly increased in the serum and synovium of OA patients. Further, we found that JUN elevated and ZFP36 decreased at protein level. CONCLUSIONS: The synovium is a sensitive tissue for mapping the adverse effects of systemic iron overload in OA. JUN and ZFP36 represent potential target genes for attenuating iron overload during OA treatment. Some discrepancies between the transcription and protein levels of JUN suggest that post-transcriptional modifications may be implicated. Future studies should also focus on the roles of JUN and ZFP36 in inducing changes in cellular components in the synovium during OA pathogenesis.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Sobrecarga de Hierro , Osteoartritis , Humanos , Bioensayo , Ferritinas , Sobrecarga de Hierro/genética , Osteoartritis/genética
3.
Front Immunol ; 14: 1090596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817415

RESUMEN

Osteoarthritis (OA) is one of the most common refractory degenerative joint diseases worldwide. Synovitis is believed to drive joint cartilage destruction during OA pathogenesis. Cuproptosis is a novel form of copper-induced cell death. However, few studies have examined the correlations between cuproptosis-related genes (CRGs), immune infiltration, and synovitis. Therefore, we analyzed CRGs in synovitis during OA. Microarray datasets (GSE55235, GSE55457, GSE12021, GSE82107 and GSE176308) were downloaded from the Gene Expression Omnibus database. Next, we conducted differential and subtype analyses of CRGs across synovitis. Immune infiltration and correlation analyses were performed to explore the association between CRGs and immune cell abundance in synovitis. Finally, single-cell RNA-seq profiling was performed using the GSE176308 dataset to investigate the expression of CRGs in the various cell clusters. We found that the expression of five CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) was significantly increased in the OA synovium. Moreover, abundant and various types of immune cells infiltrated the synovium during OA, which was correlated with the expression of CRGs. Additionally, single-cell RNA-seq profiling revealed that the cellular composition of the synovium was complex and that their proportions varied greatly as OA progressed. The expression of CRGs differed across various cell types in the OA synovium. The current study predicted that cuproptosis may be involved in the pathogenesis of synovitis. The five screened CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) could be explored as candidate biomarkers or therapeutic targets for OA synovitis.


Asunto(s)
Apoptosis , Osteoartritis , Sinovitis , Humanos , Biomarcadores/metabolismo , Análisis por Micromatrices , Osteoartritis/metabolismo , Membrana Sinovial/patología , Sinovitis/metabolismo , Cobre
4.
Biomed Pharmacother ; 151: 113092, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35550528

RESUMEN

Osteoarthritis (OA), a chronic degenerative disease with heterogeneous properties, is difficult to cure due to its complex pathogenesis. Curcumin possesses excellent anti-inflammatory and antioxidant properties and may have potential therapeutic value in OA. In this study, we investigated the action targets of curcumin and identified potential anti-OA targets for curcumin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were performed to evaluate these targets. Furthermore, we established a sodium monoiodoacetate-induced rat knee OA model and IL-1ß induced OA chondrocyte model to verify the effect and mechanism of curcumin against OA. The GO and KEGG analyses screened seven hub genes involved in metabolic processes and the AMPK signaling pathway. Curcumin can significantly attenuate OA characteristics according to Osteoarthritis Research Society International (OARSI) and Mankin scores in OA rats. Additionally, curcumin is notably employed as an activator of mitophagy in maintaining mitochondrial homeostasis (ROS, Ca2+, ATP production, and mitochondrial membrane potential). The expression levels of mitophagy-related proteins were increased not only in articular cartilage but also in chondrocytes with curcumin intervention. Combining validation experiments and network pharmacology, we identified the importance of mitophagy in the curcumin treatment of OA. The chondroprotective effects of curcumin against OA are mediated by the AMPK/PINK1/Parkin pathway, and curcumin may serve as a potential novel drug for OA management.


Asunto(s)
Curcumina , Osteoartritis , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Condrocitos/metabolismo , Curcumina/uso terapéutico , Mitofagia , Osteoartritis/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/metabolismo
5.
Stem Cells Int ; 2022: 4363632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069747

RESUMEN

Schwann cells have been found to promote osteogenesis by an unclear molecular mechanism. To better understand how Schwann cells accelerate osteogenesis, RNA-Seq and LC-MS/MS were utilized to explore the transcriptomic and metabolic response of MC3T3-E1 to Schwann cells. Osteogenic differentiation was determined by ALP staining. Lentiviruses were constructed to alter the expression of Mif (macrophage migration inhibitory factor) in Schwann cells. Western blot (WB) analysis was employed to detect the protein expression. The results of this study show that Mif is essential for Schwann cells to promote osteogenesis, and its downstream CD74/FOXO1 is also involved in the promotion of Schwann cells on osteogenesis. Further, Schwann cells regulate amino acid metabolism and lipid metabolism in preosteoblasts. These findings unveil the mechanism for Schwann cells to promote osteogenesis where Mif is a key factor.

6.
Sensors (Basel) ; 18(10)2018 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-30249021

RESUMEN

Diabetes has become a chronic metabolic disorder, and the growing diabetes population makes medical care more important. We investigated using a portable and noninvasive contact lens as an ideal sensor for diabetes patients whose tear fluid contains glucose. The key feature is the reversible covalent interaction between boronic acid and glucose, which can provide a noninvasive glucose sensor for diabetes patients. We present a phenylboronic acid (PBA)-based HEMA contact lens that exhibits a reversible swelling/shrinking effect to change its thickness. The difference in thickness can be detected in a picture taken with a smartphone and analyzed using software. Our novel technique offers the following capabilities: (i) non-enzymatic and continuous glucose detection with the contact lens; (ii) no need for an embedded circuit and power source for the glucose sensor; and (iii) the use of a smartphone to detect the change in thickness of the contact lens with no need for additional photo-sensors. This technique is promising for a noninvasive measurement of the glucose level and simple implementation of glucose sensing with a smartphone.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Lentes de Contacto , Glucosa/análisis , Teléfono Inteligente , Lágrimas/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA