Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 536
1.
Article En | MEDLINE | ID: mdl-38829261

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.

2.
RSC Chem Biol ; 5(6): 481-482, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38846075

Angela Casini (Technical University of Munich, Germany), Hui Chao (Sun Yat-Sen University, China), Hongzhe Sun (University of Hong Kong, China), and Christopher J. Chang (University of California, Berkeley, United States) introduce the themed collection on 'Chemical biology of metals'.

3.
Chem Sci ; 15(21): 8080-8088, 2024 May 29.
Article En | MEDLINE | ID: mdl-38817555

Formaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution. Here we report a mitochondrial-targeted, activity-based sensing probe for ratiometric FA detection, MitoRFAP-2, and apply this reagent to monitor endogenous mitochondrial sources and sinks of this 1C unit. We establish the utility of subcellular localization by showing that MitoRFAP-2 is sensitive enough to detect changes in mitochondrial FA pools with genetic and pharmacological modulation of enzymes involved in 1C and amino acid metabolism, including the pervasive, less active genetic mutant aldehyde dehydrogenase 2*2 (ALDH2*2), where previous, non-targeted versions of FA sensors are not. Finally, we used MitoRFAP-2 to comparatively profile basal levels of FA across a panel of breast cancer cell lines, finding that FA-dependent fluorescence correlates with expression levels of enzymes involved in 1C metabolism. By showcasing the ability of MitoRFAP-2 to identify new information on mitochondrial FA homeostasis, this work provides a starting point for the design of a broader range of chemical probes for detecting physiologically important aldehydes with subcellular resolution and a useful reagent for further studies of 1C biology.

4.
bioRxiv ; 2024 May 05.
Article En | MEDLINE | ID: mdl-38746126

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn2+-binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn2+-binding sites (CX2C-HX2C) which are potentially implicated in Cu+-binding and competition with Zn2+. Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu+-binding affinity for two and four Cu+ ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins, acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.

5.
bioRxiv ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38659813

In the era of big data in human genetics, large-scale biobanks aggregating genetic data from diverse populations have emerged as important for advancing our understanding of human health and disease. However, the computational and storage demands of whole genome sequencing (WGS) studies pose significant challenges, especially for researchers from underfunded institutions or developing countries, creating a disparity in research capabilities. We introduce new approaches that significantly enhance computational efficiency and reduce data storage requirements for WGS studies. By developing algorithms for compressed storage of genetic data, focusing particularly on optimizing the representation of rare variants, and designing regression methods tailored for the scale and complexity of WGS data, we significantly lower computational and storage costs. We integrate our approach into PLINK 2.0. The implementation demonstrates considerable reductions in storage space and computational time without compromising analytical accuracy, as evidenced by the application to the AllofUs project data. We improve runtime of an exome-wide association analysis of 19.4 million variants and a single phenotype from 695.35 minutes (approximately 11.5 hours) on a single machine to 1.57 minutes using 30Gb of memory and 50 threads (8.67 minutes using 4 threads). Similarly, we generalize to multi-phenotype analysis. We anticipate that our approach will enable researchers across the globe to unlock the potential of population biobanks, accelerating the pace of discoveries that can improve our understanding of human health and disease.

6.
Chem Rev ; 124(9): 5846-5929, 2024 May 08.
Article En | MEDLINE | ID: mdl-38657175

Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.


Fluorescent Dyes , Oxidation-Reduction , Fluorescent Dyes/chemistry , Humans , Metals/chemistry , Metals/metabolism , Animals , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Microscopy, Fluorescence
7.
J Autoimmun ; 146: 103203, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643729

Lupus erythematosus (LE) is a heterogeneous, antibody-mediated autoimmune disease. Isolate discoid LE (IDLE) and systematic LE (SLE) are traditionally regarded as the two ends of the spectrum, ranging from skin-limited damage to life-threatening multi-organ involvement. Both belong to LE, but IDLE and SLE differ in appearance of skin lesions, autoantibody panels, pathological changes, treatments, and immunopathogenesis. Is discoid lupus truly a form of LE or is it a completely separate entity? This question has not been fully elucidated. We compared the clinical data of IDLE and SLE from our center, applied multi-omics technology, such as immune repertoire sequencing, high-resolution HLA alleles sequencing and multi-spectrum pathological system to explore cellular and molecular phenotypes in skin and peripheral blood from LE patients. Based on the data from 136 LE patients from 8 hospitals in China, we observed higher damage scores and fewer LE specific autoantibodies in IDLE than SLE patients, more uCDR3 sharing between PBMCs and skin lesion from SLE than IDLE patients, elevated diversity of V-J recombination in IDLE skin lesion and SLE PBMCs, increased SHM frequency and class switch ratio in IDLE skin lesion, decreased SHM frequency but increased class switch ratio in SLE PBMCs, HLA-DRB1*03:01:01:01, HLA-B*58:01:01:01, HLA-C*03:02:02:01, and HLA-DQB1*02:01:01:01 positively associated with SLE patients, and expanded Tfh-like cells with ectopic germinal center structures in IDLE skin lesions. These findings suggest a significant difference in the immunopathogenesis of skin lesions between SLE and IDLE patients. SLE is a B cell-predominate systemic immune disorder, while IDLE appears limited to the skin. Our findings provide novel insights into the pathogenesis of IDLE and other types of LE, which may direct more accurate diagnosis and novel therapeutic strategies.


Autoantibodies , Lupus Erythematosus, Discoid , Lupus Erythematosus, Systemic , Skin , Humans , Lupus Erythematosus, Discoid/immunology , Lupus Erythematosus, Discoid/pathology , Female , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/diagnosis , Male , Autoantibodies/immunology , Autoantibodies/blood , Skin/pathology , Skin/immunology , Skin/metabolism , Adult , Middle Aged , Alleles , HLA Antigens/genetics , HLA Antigens/immunology , Young Adult , Multiomics
8.
Nature ; 627(8004): 680-687, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448587

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Cations , Cyclization , Indicators and Reagents , Proteins , Tryptophan , Cations/chemistry , Indicators and Reagents/chemistry , Oxidation-Reduction , Proteome/chemistry , Tryptophan/chemistry , Peptides/chemistry , Click Chemistry , Proteins/chemistry
9.
J Am Chem Soc ; 146(13): 8865-8876, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38470125

Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.


NAD , Neoplasms , Humans , Hydrogenation , NAD/metabolism , Carbon , Formates/chemistry
10.
ACS Chem Biol ; 19(4): 798-801, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38530767

Formaldehyde is commonly thought of as an environmental toxin or laboratory fixation reagent, but there is a growing appreciation for its broader physiological contributions as a naturally generated one-carbon metabolite across all kingdoms of life. In this In Focus article, we summarize emerging advances in the field that show how formaldehyde plays diverse roles as a one-carbon signal in DNA damage, one-carbon metabolism, and epigenetic regulation.


Carbon , Epigenesis, Genetic , Carbon/metabolism , Methylation , DNA Damage , Formaldehyde/metabolism , DNA Methylation
11.
JAMA Surg ; 159(4): 461-463, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38324281

This cross-sectional study examines federal funding, registered clinical trials, and publications to quantify trends in firearm injury prevention research in the US from 1985 to 2022.


Firearms , Wounds, Gunshot , Humans , Health Services Research , United States , Wounds, Gunshot/epidemiology , Wounds, Gunshot/prevention & control , Clinical Trials as Topic
12.
Front Mol Biosci ; 11: 1354627, 2024.
Article En | MEDLINE | ID: mdl-38389896

Copper (Cu) is an essential trace element, however an excess is toxic due to its redox properties. Cu homeostasis therefore needs to be tightly regulated via cellular transporters, storage proteins and exporters. An imbalance in Cu homeostasis has been associated with neurodegenerative disorders such as Wilson's disease, but also Alzheimer's or Parkinson's disease. In our current study, we explored the utility of using Caenorhabditis elegans (C. elegans) as a model of Cu dyshomeostasis. The application of excess Cu dosing and the use of mutants lacking the intracellular Cu chaperone atox-1 and major Cu storage protein ceruloplasmin facilitated the assessment of Cu status, functional markers including total Cu levels, labile Cu levels, Cu distribution and the gene expression of homeostasis-related genes. Our data revealed a decrease in total Cu uptake but an increase in labile Cu levels due to genetic dysfunction, as well as altered gene expression levels of Cu homeostasis-associated genes. In addition, the data uncovered the role ceruloplasmin and atox-1 play in the worm's Cu homeostasis. This study provides insights into suitable functional Cu markers and Cu homeostasis in C. elegans, with a focus on labile Cu levels, a promising marker of Cu dysregulation during disease progression.

13.
Mol Cancer Ther ; 23(6): 854-863, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38417139

Docetaxel has been the standard first-line chemotherapy for lethal metastatic prostate cancer (mPCa) since 2004, but resistance to docetaxel treatment is common. The molecular mechanisms of docetaxel resistance remain largely unknown and could be amenable to interventions that mitigate resistance. We have recently discovered that several docetaxel-resistant mPCa cell lines exhibit lower uptake of cellular copper and uniquely express higher levels of a copper exporter protein ATP7B. Knockdown of ATP7B by silencing RNAs (siRNA) sensitized docetaxel-resistant mPCa cells to the growth-inhibitory and apoptotic effects of docetaxel. Importantly, deletions of ATP7B in human mPCa tissues predict significantly better survival of patients after their first chemotherapy than those with wild-type ATP7B (P = 0.0006). In addition, disulfiram (DSF), an FDA-approved drug for the treatment of alcohol dependence, in combination with copper, significantly enhanced the in vivo antitumor effects of docetaxel in a docetaxel-resistant xenograft tumor model. Our analyses also revealed that DSF and copper engaged with ATP7B to decrease protein levels of COMM domain-containing protein 1 (COMMD1), S-phase kinase-associated protein 2 (Skp2), and clusterin and markedly increase protein expression of cyclin-dependent kinase inhibitor 1 (p21/WAF1). Taken together, our results indicate a copper-dependent nutrient vulnerability through ATP7B exporter in docetaxel-resistant prostate cancer for improving the therapeutic efficacy of docetaxel.


Adenosine Triphosphatases , Cation Transport Proteins , Copper-Transporting ATPases , Copper , Disulfiram , Docetaxel , Drug Resistance, Neoplasm , Prostatic Neoplasms , Taxoids , Xenograft Model Antitumor Assays , Male , Humans , Disulfiram/pharmacology , Disulfiram/therapeutic use , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Docetaxel/pharmacology , Docetaxel/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Taxoids/pharmacology , Taxoids/therapeutic use , Animals , Cell Line, Tumor , Mice , Adenosine Triphosphatases/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects
14.
bioRxiv ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38370809

Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.

16.
J Bronchology Interv Pulmonol ; 31(2): 155-159, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37982602

BACKGROUND: Pleural infections related to indwelling pleural catheters (IPCs) are an uncommon clinical problem. However, management decisions can be complex for patients with active malignancies due to their comorbidities and limited life expectancies. There are limited studies on the management of IPC-related infections, including whether to remove the IPC or use intrapleural fibrinolytics. METHODS: We conducted a retrospective cohort study of patients with active malignancies and IPC-related empyemas at our institution between January 1, 2005 and May 31, 2021. The primary outcome was to evaluate clinical outcomes in patients with malignant pleural effusions and IPC-related empyemas treated with intrapleural tissue plasminogen activator (tPA) and deoxyribonuclease (DNase) compared with those treated with tPA alone or no intrapleural fibrinolytic therapy. The secondary outcome evaluated was the incidence of bleeding complications. RESULTS: We identified 69 patients with a malignant pleural effusion and an IPC-related empyema. Twenty patients received tPA/DNase, 9 received tPA alone, and 40 were managed without fibrinolytics. Those treated with fibrinolytics were more likely to have their IPCs removed as part of the initial management strategy ( P =0.004). The rate of surgical intervention and mortality attributable to the empyema were not significantly different between treatment groups. There were no bleeding events in any group. CONCLUSION: In patients with IPC-related empyemas, we did not find significant differences in the rates of surgical intervention, empyema-related mortality, or bleeding complications in those treated with intrapleural tPA/DNase, tPA alone, or no fibrinolytics. More patients who received intrapleural fibrinolytics had their IPCs removed, which may have been due to selection bias.


Empyema, Pleural , Pleural Effusion, Malignant , Pleural Effusion , Humans , Tissue Plasminogen Activator/therapeutic use , Fibrinolytic Agents/therapeutic use , Empyema, Pleural/drug therapy , Retrospective Studies , Pleural Effusion, Malignant/drug therapy , Pleural Effusion, Malignant/complications , Catheters, Indwelling/adverse effects , Deoxyribonucleases , Pleural Effusion/therapy
17.
Mediastinum ; 7: 33, 2023.
Article En | MEDLINE | ID: mdl-38090030

Aero-digestive fistulas (ADFs) are pathologic connections between the airways and gastrointestinal system. These most commonly occur between the central airways and esophagus. Fistulas may develop congenitally or be acquired from a benign or malignant process. Most fistulas presenting in adulthood are acquired, with similar rates of benign and malignant etiologies. Symptoms may severely impact a patient's quality of life and result in dyspnea, cough, and oral intolerance. ADFs have been associated with increased mortality, often related to pneumonias and malnutrition. Management is multifaceted and includes a multidisciplinary approach between the pulmonologist, gastroenterologist, and thoracic surgeon. While definitive management can be achieved with surgery, this is typically reserved for benign causes as surgical repair is often impractical in patients with advanced malignancies. With malignant causes, less invasive endoscopic and/or bronchoscopic interventions may be indicated. Stenting is the most common non-surgical invasive intervention performed. Stents can be placed in the esophagus, airway, or both. There is limited data that suggests outcomes may be better when esophageal stenting is performed with or without airway stenting. Airway stents are indicated when there is airway compromise, inadequate sealing of the fistula with an esophageal stent alone, or when an esophageal stent cannot be placed. This review will provide an overview of approaching ADFs from the bronchoscopist's perspective.

18.
Science ; 382(6670): eabp9201, 2023 11 03.
Article En | MEDLINE | ID: mdl-37917677

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.


Carbon , Cysteine , Epigenesis, Genetic , Formaldehyde , Methionine Adenosyltransferase , S-Adenosylmethionine , Animals , Mice , Carbon/metabolism , Epigenesis, Genetic/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , S-Adenosylmethionine/antagonists & inhibitors , S-Adenosylmethionine/metabolism , Formaldehyde/metabolism , Formaldehyde/toxicity , Environmental Exposure , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Cysteine/metabolism , Humans , Hep G2 Cells
20.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article En | MEDLINE | ID: mdl-37794590

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
...