Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
PLoS One ; 19(3): e0294451, 2024.
Article En | MEDLINE | ID: mdl-38466671

Designers rely on sketching to visualize and refine their initial ideas, and virtual reality (VR) tools now facilitate sketching in immersive 3D environments. However, little research has been conducted on the differences in the visual and spatial processes involved in 3D versus 2D sketching and their effects on cognition. This study investigated potential differences in spatial and visual functions related to the use of 3D versus 2D sketching media by analyzing functional magnetic resonance imaging (fMRI) data. We recruited 20 healthy, right-handed students from the Department of Horticulture and Landscape Architecture with at least three years of experience in freehand landscape drawing. Using an Oculus Quest VR headset controller and a 12.9-inch iPad Pro with an Apple Pencil, we tested participants individually with 3D and 2D sketching, respectively. When comparing 2D and 3D sketches, our fMRI results revealed significant differences in the activation of several brain regions, including the right middle temporal gyrus, both sides of the parietal lobe, and the left middle occipital gyrus. We also compared different sketching conditions, such as lines, geometrical objects (cube), and naturalistic objects (perspective view of a tree), and found significant differences in the spatial and visual recognition of brain areas that support visual recognition, composition, and spatial perception. This finding suggests that 3D sketching environments, such as VR, may activate more visual-spatial functions during sketching compared to 2D environments. The result highlights the potential of immersive sketching environments for design-related processes and spatial thinking.


Brain , Virtual Reality , Humans , Brain/diagnostic imaging , Brain/physiology , Space Perception/physiology , Magnetic Resonance Imaging , Brain Mapping
2.
Front Psychol ; 14: 1047993, 2023.
Article En | MEDLINE | ID: mdl-37287788

Multiple studies using various measures, technologies, and participant groups have found that exposure to urban green infrastructure can help alleviate the daily attentional fatigue that human experience. Although we have made significant progress in understanding the effects of exposure to urban green infrastructure on attention restoration, two important gaps in our knowledge remain. First, we do not fully understand the neural processes underlying attention restoration that exposure to urban green infrastructure elicits. Second, we are largely unaware of how typical patterns of urban green infrastructure, such as combinations of trees and bioswales, affect recovery from attentional fatigue. This knowledge is crucial to guide the design and management of urban landscapes that effectively facilitate attention restoration. To address these gaps in our knowledge, we conducted a controlled experiment in which 43 participants were randomly assigned to one of three video treatment categories: no green infrastructure (No GI), trees, or trees and bioswales. We assessed attentional functioning using functional Magnetic Resonance Imaging (fMRI) and the Sustained Attention Response Task (SART). Participants exposed to urban settings with trees exhibited improved top-down attentional functioning, as evidenced by both fMRI and SART results. Those exposed to urban settings with trees and bioswales demonstrated some attention-restorative neural activity, but without significant improvements in SART performance. Conversely, participants exposed to videos of urban environments without green infrastructure displayed increased neural vigilance, suggesting a lack of attention restoration, accompanied by reduced SART performance. These consistent findings offer empirical support for the Attention Restoration Theory, highlighting the effectiveness of tree exposure in enhancing attentional functioning. Future research should investigate the potential impact of bioswales on attention restoration.

3.
Front Psychiatry ; 13: 895213, 2022.
Article En | MEDLINE | ID: mdl-35966494

This study investigated the effects of different natural environments on attention restoration and creativity. To compare the restorative benefits based on the degrees of perceived naturalness in urban areas, this study categorized environments into three types of perceived naturalness and tested the effect on one's creativity. The urban campus was selected as the study site, representing high-, medium-, and low-perceived naturalness photosets downloaded from Google Street Map images as experimental stimuli. The study invited 100 subjects to take the Abbreviated Torrance Test for Adults (ATTA), which measures creative thinking by viewing the onscreen photosets of the experimental stimuli. In addition, this study asked participants to complete the Perceived Restoration Scale (PRS) questionnaires. The results showed that high- and medium-perceived naturalness in the urban-campus site was superior to low-perceived naturalness in creative performance. In addition, there were significant differences in elaboration and flexibility for different degrees of perceived naturalness. Various degrees of perceived naturalness showed a substantial correlation between PRS scores and ATTA scores. The attention restoration benefits of high- and medium-naturalness environments improve creativity. Our study indicates that viewing natural environments stimulates curiosity and fosters flexibility and imagination, highly natural environments distract our minds from work, and the benefits of attention restoration can improve the uniqueness and diversity of creative ideas. This study provides a reference for creative environmental design and supports further understanding of nature's health and creativity benefits in urban areas.

4.
Brain Connect ; 12(9): 835-845, 2022 Nov.
Article En | MEDLINE | ID: mdl-35343241

Introduction: The concept of local sleep refers to the phenomenon of local brain activity that modifies neural networks during unresponsive global sleep. Such network rewiring may differ across spatial scales; however, the global and local alterations in brain systems remain elusive in human sleep. Materials and Methods: We examined cross-scale changes of brain networks in sleep. Functional magnetic resonance imaging data were acquired from 28 healthy participants during nocturnal sleep. We adopted both metrics of connectivity (functional connectivity [FC] and regional homogeneity [ReHo]) and complexity (multiscale entropy) to explore the global and local functionality of the neural assembly across nonrapid eye movement sleep stages. Results: Long-range FC decreased with sleep depth, whereas local ReHo peaked at the N2 stage and reached its lowest level at the N3 stage. Entropy exhibited a general decline at the local scale (Scale 1) as sleep deepened, whereas the coarse-scale entropy (Scale 3) was consistent across stages. Discussion: The negative correlation between Scale-1 entropy and ReHo reflects the enhanced signal regularity and synchronization in sleep, identifying the information exchange at the local scale. The N2 stage showed a distinctive pattern toward local information processing with scrambled long-distance information exchange, indicating a specific time window for network reorganization. Collectively, the multidimensional metrics indicated an imbalanced global-local relationship among brain functional networks across sleep-wake stages.


Brain Mapping , Brain , Humans , Brain/diagnostic imaging , Entropy , Magnetic Resonance Imaging , Sleep
5.
J Vis Exp ; (180)2022 02 03.
Article En | MEDLINE | ID: mdl-35188119

The current protocol aims to showcase the technology integration, providing a detailed description of adopting the HealthCloud app, developed by the Healthy Landscape and Healthy People Lab, National Taiwan University (HLHP-NTU), on smartphones and smartwatches to collect data on users' real-time psychological and physiological responses and environmental information. A flexible and integrated research method was proposed because it can be difficult to measure multi-dimensional aspects of personal data in on-site studies in landscape and outdoor recreation research. An on-site study conducted in 2020 at the National Taiwan University campus was used as an application example. A dataset of 385 participants was used after excluding invalid samples. During the experiment, participants were asked to walk around campus for 30 min when their heart rate and psychological-scale items were measured, together with several environmental metrics. This work aimed to provide a possible solution to help on-site studies track real-time human responses that match ambient factors. Due to the app's flexibility, its use on wearable devices shows excellent potential for multidisciplinary research studies.


Mobile Applications , Wearable Electronic Devices , Health Status , Humans , Monitoring, Physiologic , Smartphone
6.
PLoS One ; 16(12): e0258413, 2021.
Article En | MEDLINE | ID: mdl-34941895

Graphic design thinking is a key skill for landscape architects, but little is known about the links between the design process and brain activity. Based on Goel's frontal lobe lateralization hypothesis (FLLH), we used functional magnetic resonance imaging (fMRI) to scan the brain activity of 24 designers engaging in four design processes-viewing, copy drawing, preliminary ideas, and refinement-during graphic design thinking. The captured scans produced evidence of dramatic differences between brain activity when copying an existing graphic and when engaging in graphic design thinking. The results confirm that designs involving more graphic design thinking exhibit significantly more activity in the left prefrontal cortex. These findings illuminate the design process and suggest the possibility of developing specific activities or exercises to promote graphic design thinking in landscape architecture.


Brain Mapping/methods , Brain/physiology , Creativity , Magnetic Resonance Imaging/methods , Prefrontal Cortex/physiology , Adult , Computer Graphics , Functional Laterality , Humans , Male , Thinking/physiology , Young Adult
7.
Mol Brain ; 14(1): 152, 2021 10 04.
Article En | MEDLINE | ID: mdl-34607601

The glutamatergic signaling pathway is involved in molecular learning and human cognitive ability. Specific single variants (SNVs, formerly single-nucleotide polymorphisms) in the genes encoding N-methyl-D-aspartate receptor subunits have been associated with neuropsychiatric disorders by altering glutamate transmission. However, these variants associated with cognition and mental activity have rarely been explored in healthy adolescents. In this study, we screened for SNVs in the glutamatergic signaling pathway to identify genetic variants associated with cognitive ability. We found that SNVs in the subunits of ionotropic glutamate receptors, including GRIA1, GRIN1, GRIN2B, GRIN2C, GRIN3A, GRIN3B, and calcium/calmodulin-dependent protein kinase IIα (CaMK2A) are associated with cognitive function. Plasma CaMK2A level was correlated positively with the cognitive ability of Taiwanese senior high school students. We demonstrated that elevating CaMK2A increased its autophosphorylation at T286 and increased the expression of its downstream targets, including GluA1 and phosphor- GluA1 in vivo. Additionally, methyl-CpG binding protein 2 (MeCP2), a downstream target of CaMK2A, was found to activate the expression of CaMK2A, suggesting that MeCP2 and CaMK2A can form a positive feedback loop. In summary, two members of the glutamatergic signaling pathway, CaMK2A and MeCP2, are implicated in the cognitive ability of adolescents; thus, altering the expression of CaMK2A may affect cognitive ability in youth.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Cognition/physiology , Methyl-CpG-Binding Protein 2/physiology , Psychology, Adolescent , Receptors, Ionotropic Glutamate/genetics , Signal Transduction/physiology , Adolescent , Calcium-Calmodulin-Dependent Protein Kinase Type 2/blood , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Line, Tumor , Enzyme Activation , Feedback, Physiological/physiology , Female , Glutamic Acid/physiology , HEK293 Cells , Humans , Male , Neuroblastoma , Phosphorylation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Processing, Post-Translational , Receptors, Ionotropic Glutamate/physiology , Reference Values , Taiwan
8.
PLoS One ; 16(1): e0240180, 2021.
Article En | MEDLINE | ID: mdl-33395692

People experience a healthy energy gained from the environment and an inner feeling, called the Qi experience. The flow experience has been a popular topic in Western studies, especially within the fields of psychology and health, and in all kinds of activities. Our current study used quantitative and qualitative methods to analyze the relationship between the Qi experience and the flow experience. After collecting data using open-ended questions, we integrated and connected the Qi experience into five orientations: (1) the feeling of Qi; (2) the mind; (3) Qi and consciousness; (4) physical, mental, and spiritual benefits; and (5) the feeling of Tao. The results revealed a high level of consistency between the flow experience and the Qi experience (r = 0.90, p<0.00, which supports the conclusion that the concept of the flow experience in Qigong activity seems to be the same as that in East Asian disciplines, called the Qi experience.


Parks, Recreational , Qi , Qigong , Female , Humans , Male
9.
ACS Sens ; 5(10): 3082-3090, 2020 10 23.
Article En | MEDLINE | ID: mdl-32786388

In this work, we demonstrate a multifunctional, portable, and disposable microfluidic device for blood typing and primary screening of blood diseases. Preloaded antibodies (anti-A, anti-B, and anti-D) interact with injected whole blood cells to cause an agglutination reaction that blocks a microslit in the microfluidic channel to accumulate red blood cells and form a visible red line that can be easily read to determine the blood type. Moreover, the different blood density and agglutination properties of normal and subtype blood groups, as well as different blood diseases, including anemia and polycythemia vera, generate different lengths of blood agglutination within the channels, which allows us to successfully screen these various conditions in as little as 2 min. The required blood volume for each test is just 1 µL, which can be obtained by minimally invasive finger pricking. This novel method of observing agglutinated red blood cells to distinguish blood types and diseases is both feasible and affordable, suggesting its promise for use in areas with limited resources.


Blood Grouping and Crossmatching , Hematologic Diseases , Agglutination , Humans , Lab-On-A-Chip Devices , Microfluidics
10.
Genes Brain Behav ; 18(5): e12559, 2019 06.
Article En | MEDLINE | ID: mdl-30806012

Several reports have shown that methyl CpG-binding protein 2 (MeCP2), brain-derived neurotrophic factor (BDNF), phospho-cAMP response element-binding protein (p-CREB) and microRNAs may be important in regulating academic performance because of their roles in neuropsychiatry and cognitive diseases. The first goal of this study was to explore the associations among MeCP2, BDNF, CREB and academic performance. This study also examined the pathway responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. Scores from the basic competency test, an annual national competitive entrance examination, were used to evaluate academic performance. Subjects' plasma RNA was extracted and analyzed. This study determined that participants in the higher academic performance group had a significant difference in MECP2 mRNA expression compared with the lower academic performance group. We then used neuronal human derived neuroblastoma cell line (SH-SY5Y) cells with inducible MeCP2 expression from a second copy of the gene as a gain-of-function model and found that MeCP2 overexpression positively affected p-CREB and BDNF expression initially. After negative feedback, the p-CREB and BDNF levels subsequently decreased. In the neuronal phenotype examination, we found a significant reduction in total outgrowth and branches in MeCP2-induced cells compared with noninduced cells. This work describes pathways that may be responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. These results may shed light on the development of promising clinical treatment strategies in the area of neuropsychological adjustment.


Academic Performance , Epigenesis, Genetic , Adolescent , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Gain of Function Mutation , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Article En | MEDLINE | ID: mdl-30010582

Neural oscillatory activities existing in multiple fre-quency bands usually represent different levels of neurophysiolog-ical meanings, from micro-scale to macro-scale organizations. In this study, we adopted Holo-Hilbert spectral analysis (HHSA) to study the amplitude-modulated (AM) and frequency-modulated (FM) components in sensorimotor Mu rhythm, induced by slow- and fast-rate repetitive movements. The HHSA-based approach is a two-layer empirical mode decomposition (EMD) architecture, which firstly decomposes the EEG signal into a series of frequency-modulated intrinsic mode functions (IMF) and then decomposes each frequency-modulated IMF into a set of amplitude-modulated IMFs. With the HHSA, the FM and AM components were incor-porated with their instantaneous power to achieve full-informa-tional spectral analysis. We observed that the instantaneous power induced by slow-rate movements was significantly higher than that induced by fast-rate movements (p < 0.01, Wilcoxon signed rank test). The alpha-band AM frequencies induced by slow-rate movements were higher than those induced by fast-rate move-ments, while no statistical difference was found in beta-band AM frequencies. In addition, to study the functional coupling between the primary sensorimotor area and other brain regions, spectral coherence was applied and statistical difference was found in frontal area in slow-rate versus fast-rate movements. The discrep-ancy between slow- and fast-rate movements might be owing to the change of motor functional modes from default mode network (DMN) to automatic timing with the increase of movement rates. The use of HHSA for oscillatory activity analysis can be an effi-cient tool to provide informative interaction among different fre-quency bands.

12.
Article En | MEDLINE | ID: mdl-29019914

As urbanization increases around the world and fewer and fewer people have easy access to completely natural places, there is a growing need to understand how the landscapes we design and inhabit impact our health and wellbeing.[...].


Environment , Health , Humans , Quality of Life , Urbanization
13.
Nanoscale Res Lett ; 12(1): 315, 2017 Dec.
Article En | MEDLINE | ID: mdl-28454481

We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N2-based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H2/NH3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.

14.
Sci Rep ; 6: 39046, 2016 12 15.
Article En | MEDLINE | ID: mdl-27976723

Repetitive movements at a constant rate require the integration of internal time counting and motor neural networks. Previous studies have proved that humans can follow short durations automatically (automatic timing) but require more cognitive efforts to track or estimate long durations. In this study, we studied sensorimotor oscillatory activities in healthy subjects and chronic stroke patients when subjects were performing repetitive finger movements. We found the movement-modulated changes in alpha and beta oscillatory activities were decreased with the increase of movement rates in finger lifting of healthy subjects and the non-paretic hands in stroke patients, whereas no difference was found in the paretic-hand movements at different movement rates in stroke patients. The significant difference in oscillatory activities between movements of non-paretic hands and paretic hands could imply the requirement of higher cognitive efforts to perform fast repetitive movements in paretic hands. The sensorimotor oscillatory response in fast repetitive movements could be a possible indicator to probe the recovery of motor function in stroke patients.


Hand/physiopathology , Movement/physiology , Paresis/physiopathology , Stroke/complications , Aged , Case-Control Studies , Female , Fingers/physiopathology , Healthy Volunteers , Humans , Male , Middle Aged , Psychomotor Performance , Recovery of Function , Stroke/physiopathology
15.
Opt Express ; 24(17): 19978-87, 2016 Aug 22.
Article En | MEDLINE | ID: mdl-27557273

A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources.

16.
Opt Express ; 24(11): 11387-95, 2016 May 30.
Article En | MEDLINE | ID: mdl-27410067

In this study, high-performance InGaN-based green light-emitting diodes (LEDs) with a quaternary InAlGaN/GaN superlattice electron blocking layer (QSL-EBL) have been demonstrated. The band structural simulation was employed to investigate the electrostatic field and carriers distribution, show that the efficiency and droop behavior can be intensively improved by using a QSL-EBL in LEDs. The QSL-EBL structure can reduce the polarization-related electrostatic fields in the multiple quantum wells (MQWs), leading to a smoother band diagram and a more uniform carriers distribution among the quantum wells under forward bias. In comparison with green LEDs with conventional bulk-EBL structure, the light output power of LEDs with QSL-EBL was greatly enhanced by 53%. The efficiency droop shows only 30% at 100 A/cm2 comparing to its peak value, suggesting that the QSL-EBL LED is promising for future white lighting with high performance.

17.
BMJ Open ; 6(5): e009925, 2016 05 20.
Article En | MEDLINE | ID: mdl-27207620

OBJECTIVE: To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. SETTING: A nursing course at a university in central Taiwan. PARTICIPANTS: 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. DESIGN AND METHODS: Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a 'preferred environment aligned with perceived learning environment' group and a 'preferred environment discordant with perceived learning environment' group. Learning outcomes were analysed by group. OUTCOME MEASURES: Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. CONCLUSIONS: As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment.


Consumer Behavior , Education, Nursing/methods , Problem-Based Learning , Students, Nursing/psychology , Attitude of Health Personnel , Cross-Sectional Studies , Curriculum , Educational Status , Environment , Health Knowledge, Attitudes, Practice , Humans , Perception , Self Efficacy , Surveys and Questionnaires , Taiwan
18.
Neural Plast ; 2016: 6851592, 2016.
Article En | MEDLINE | ID: mdl-26819771

Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA) glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP) variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D) with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213) was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328) was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.


Adolescent Behavior/physiology , Emotions/physiology , Polymorphism, Single Nucleotide , Receptors, N-Methyl-D-Aspartate/genetics , Social Behavior , Adolescent , Epigenesis, Genetic , Female , Genetic Association Studies , Genotype , Humans , Male
19.
Sci Rep ; 6: 19757, 2016 Jan 22.
Article En | MEDLINE | ID: mdl-26794268

The epitaxy of high-power gallium nitride (GaN) light-emitting diode (LED) on amorphous silicon carbide (a-SixC(1-x)) buffer is demonstrated. The a-SixC(1-x) buffers with different nonstoichiometric C/Si composition ratios are synthesized on SiO2/Si substrate by using a low-temperature plasma enhanced chemical vapor deposition. The GaN LEDs on different SixC(1-x) buffers exhibit different EL and C-V characteristics because of the extended strain induced interfacial defects. The EL power decays when increasing the Si content of SixC(1-x) buffer. The C-rich SixC(1-x) favors the GaN epitaxy and enables the strain relaxation to suppress the probability of Auger recombination. When the SixC(1-x) buffer changes from Si-rich to C-rich condition, the EL peak wavelengh shifts from 446 nm to 450 nm. Moreover, the uniform distribution contour of EL intensity spreads between the anode and the cathode because the traping density of the interfacial defect gradually reduces. In comparison with the GaN LED grown on Si-rich SixC(1-x) buffer, the device deposited on C-rich SixC(1-x) buffer shows a lower turn-on voltage, a higher output power, an external quantum efficiency, and an efficiency droop of 2.48 V, 106 mW, 42.3%, and 7%, respectively.

20.
IEEE Trans Neural Syst Rehabil Eng ; 24(5): 603-15, 2016 05.
Article En | MEDLINE | ID: mdl-26625417

This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.


Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/rehabilitation , Brain-Computer Interfaces , Evoked Potentials, Visual , Visual Cortex/physiopathology , Visual Perception , Adult , Aging , Communication Aids for Disabled , Electroencephalography/methods , Feasibility Studies , Frontal Lobe , Humans , Middle Aged , Psychomotor Performance , Reproducibility of Results , Sensitivity and Specificity
...