Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693487

RESUMEN

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Genoma Fúngico , Familia de Multigenes , Metabolismo Secundario , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo , Metabolismo Secundario/genética , Zea mays/microbiología , Zea mays/genética , Estudio de Asociación del Genoma Completo , Genes Fúngicos , Secuenciación Completa del Genoma , Variación Genética
2.
Fungal Genet Biol ; 170: 103863, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154756

RESUMEN

Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.


Asunto(s)
Aflatoxinas , Indoles , Péptidos Cíclicos , Humanos , Aflatoxinas/genética , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Sistemas CRISPR-Cas , Comercio , Internacionalidad , Familia de Multigenes , ADN/metabolismo
3.
Mycobiology ; 51(3): 139-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359951

RESUMEN

Aspergillus sojae has long been considered a domesticated strain of Aspergillus parasiticus. This study delineated relationships among the two species and an Aspergillus PWE36 isolate. Of 25 examined clustered aflatoxin genes of PWE36, 20 gene sequences were identical to those of A. sojae, but all had variations to those of A. parasiticus. Additionally, PWE36 developmental genes of conidiation and sclerotial formation, overall, shared higher degrees of nucleotide sequence identity with A. sojae genes than with A. parasiticus genes. Examination of defective cyclopiazonic acid gene clusters revealed that the PWE36 deletion pattern was identical only to those of A. sojae. Using A. sojae SMF134 genome sequence as a reference, visualization of locally collinear blocks indicated that PWE36 shared higher genome sequence homologies with A. sojae than with A. parasiticus. Phylogenetic inference based on genome-wide single nucleotide polymorphisms (SNPs) and total SNP counts showed that A. sojae strains formed a monophyletic clade and were clonal. Two (Argentinian and Ugandan) A. parasiticus isolates but not including an Ethiopian isolate formed a monophyletic clade, which showed that A. parasiticus population is genetically diverse and distant to A. sojae. PWE36 and A. sojae shared a most recent common ancestor (MRCA). The estimated divergence time for PWE36 and A. sojae was about 0.4 mya. Unlike Aspergillus oryzae, another koji mold that includes genetically diverse populations, the findings that current A. sojae strains formed a monophyletic group and shared the MRCA with PWE36 allow A. sojae to be continuously treated as a species for food safety reasons.

4.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836373

RESUMEN

Kojic acid (KA) is a fungal metabolite and has a variety of applications in the cosmetics and food industries. Aspergillus oryzae is a well-known producer of KA, and its KA biosynthesis gene cluster has been identified. In this study, we showed that nearly all section Flavi aspergilli except for A. avenaceus had complete KA gene clusters, and only one Penicillium species, P. nordicum, contained a partial KA gene cluster. Phylogenetic inference based on KA gene cluster sequences consistently grouped section Flavi aspergilli into clades as prior studies. The Zn(II)2Cys6 zinc cluster regulator KojR transcriptionally activated clustered genes of kojA and kojT in Aspergillus flavus. This was evidenced by the time-course expression of both genes in kojR-overexpressing strains whose kojR expression was driven by a heterologous Aspergillus nidulans gpdA promoter or a homologous A. flavus gpiA promoter. Using sequences from the kojA and kojT promoter regions of section Flavi aspergilli for motif analyses, we identified a consensus KojR-binding motif to be an 11-bp palindromic sequence of 5'-CGRCTWAGYCG-3' (R = A/G, W = A/T, Y = C/T). A CRISPR/Cas9-mediated gene-targeting technique showed that the motif sequence, 5'-CGACTTTGCCG-3', in the kojA promoter was critical for KA biosynthesis in A. flavus. Our findings may facilitate strain improvement and benefit future kojic acid production.

5.
J Fungi (Basel) ; 9(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675939

RESUMEN

Aspergillus flavus is an opportunistic pathogen responsible for millions of dollars in crop losses annually and negative health impacts on crop consumers globally. A. flavus strains have the potential to produce aflatoxin and other toxic secondary metabolites, which often increase during plant colonization. To mitigate the impacts of this international issue, we employ a range of strategies to directly impact fungal physiology, growth and development, thus requiring knowledge on the underlying molecular mechanisms driving these processes. Here we utilize RNA-sequencing data that are obtained from in situ assays, whereby Zea mays kernels are inoculated with A. flavus strains, to select transcription factors putatively driving virulence-related gene networks. We demonstrate, through growth, sporulation, oxidative stress-response and aflatoxin/CPA analysis, that three A. flavus strains with knockout mutations for the putative transcription factors AFLA_089270, AFLA_112760, and AFLA_031450 demonstrate characteristics such as reduced growth capacity and decreased aflatoxin/CPA accumulation in kernels consistent with decreased fungal pathogenicity. Furthermore, AFLA_089270, also known as HacA, eliminates CPA production and impacts the fungus's capacity to respond to highly oxidative conditions, indicating an impact on plant colonization. Taken together, these data provide a sound foundation for elucidating the downstream molecular pathways potentially contributing to fungal virulence.

6.
Microbiol Spectr ; 11(1): e0464822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36651760

RESUMEN

For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.


Asunto(s)
Aspergillus fumigatus , Aspergillus nidulans , Aspergillus niger , Sistemas CRISPR-Cas
7.
Int J Food Microbiol ; 366: 109559, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35144216

RESUMEN

Aspergillus flavus communities in agricultural fields consist of isolates with varying abilities to produce aflatoxins, which are highly toxic and carcinogenic to humans and animals. Biological control using multiple non-aflatoxigenic strains as a formulation to outcompete aflatoxigenic A. flavus has become a mainstream strategy. Aflasafe™ is a biocontrol product composed of four strains, Ka16127, La3279, La3304 and Og0222. It was first developed in Nigeria and is now widely used on maize and groundnut. In this study, phylogenetic analyses based on genome-wide single nucleotide polymorphisms showed that Ka16127 and La3304 were more closely related to each other than both were to La3279, and the three were distantly related to Og0222. Detailed molecular characterization of La3279 indicated that its genome, contradictory to the published report, lacked approximately half of the aflatoxin gene cluster as well as the entire cyclopiazonic acid gene cluster. La3279 was a member of the previously known "pattern E" group, which includes A. flavus and Aspergillus oryzae isolates that have the aforementioned deletion followed by a 3.8-kb "E block" sequence insertion. In comparison to the E block, corresponding regions in typical aflatoxigenic S-morphotype/genotype isolates as well as Ka16127 and La3304 were found to lack 1.1 kb of the 5' portion whereas L-morphotype/genotype isolates contained a complete nonhomologous region characterized by 2.5 copies of A. flavus telomeric repeat sequence at one end. Regions corresponding to the E block were highly variable and were useful for classifying A. flavus isolates into groups that mostly contained both mating types. The presence of both mating-type genes in genetically closely related A. flavus suggests a previously active sexual cycle. It could facilitate the development of a refined biocontrol strategy such as deploying biocontrol strains with the same mating-type that is predominant in a field A. flavus population.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aflatoxinas/genética , Aspergillus flavus/genética , Agentes de Control Biológico , Genómica , Familia de Multigenes , Filogenia
8.
Microbiol Spectr ; 10(1): e0079121, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080432

RESUMEN

Aspergillus flavus aflR, a gene encoding a Zn(II)2Cys6 DNA-binding domain, is an important transcriptional regulator of the aflatoxin biosynthesis gene cluster. Our previous results of Gene ontology (GO) analysis for the binding sites of AflR in A. flavus suggest that AflR may play an integrative regulatory role. In this study the ΔaflR and overexpression (OE) strains based on the well-established double-crossover recombinational technique were constructed to investigate the integrative function of the aflR gene in A. flavus. The disruption of aflR severely affected the aflatoxin biosynthetic pathway, resulting in a significant decrease in aflatoxin production. The aflatoxin B1 (AFB1) of the ΔaflR strain was 180 ng/mL and aflatoxin B2 (AFB2) was 2.95 ng/mL on YES medium for 5 days, which was 1/1,000 of that produced by the wild-type strain (WT). In addition, the ΔaflR strain produced relatively sparse conidia and a very small number of sclerotia. On the seventh day, the sclerotia yield on each plate of the WT and OE strains exceeded 1,000, while the sclerotial formation of the ΔaflR strain was not detected until 14 days. However, the biosynthesis of cyclopiazonic acid (CPA) was not affected by aflR gene disruption. Transcriptomic analysis of the ΔaflR strain grown on potato dextrose agar (PDA) plates at 0 h, 24 h, and 72 h showed that expression of clustering genes involved in the biosynthesis of aflatoxin was significantly downregulated. Meanwhile, the ΔaflR strain compared with the WT strain showed significant expression differences in genes involved in spore germination, sclerotial development, and carbohydrate metabolism compared to the WT. The results demonstrated that the A. flavus aflR gene also played a positive role in the fungal growth and development in addition to aflatoxin biosynthesis. IMPORTANCE Past studies of the A. flavus aflR gene and its orthologues in related Aspergillus species were solely focused on their roles in secondary metabolism. In this study, we used the ΔaflR and OE strains to demonstrate the role of aflR in growth and development of A. flavus. For the first time, we confirmed that the ΔaflR strain also was defective in production of conidia and sclerotia, asexual propagules of A. flavus. Our transcriptomic analysis further showed that genes involved in spore germination, sclerotial development, aflatoxin biosynssssthesis, and carbohydrate metabolism exhibited significant differences in the ΔaflR strain compared with the WT strain. Our study indicates that AflR not only plays an important role in regulating aflatoxin synthesis but also in playing a positive role in the conidial formation and sclerotial development in A. flavus. This study reveals the critical and positive role of the aflR gene in fungal growth and development, and provides a theoretical basis for the genetic studies of other aspergilli.


Asunto(s)
Aspergillus flavus/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Transcripción Genética , Aflatoxinas/biosíntesis , Aspergillus flavus/clasificación , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Familia de Multigenes , Filogenia , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
9.
Foods ; 10(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34574183

RESUMEN

The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 µg mL-1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.

10.
BMC Res Notes ; 14(1): 111, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757556

RESUMEN

OBJECTIVE: The use of genome sequences from strains authenticated to correct species level is a prerequisite for confidently exploring the evolutionary relationship among related species. Aspergillus strains erroneously curated as Aspergillus oryzae and Aspergillus fumigatus have been noticed in the National Center for Biotechnology Information (NCBI) genome database. Aspergillus parasiticus is one of several aspergilli that produce aflatoxin, the most potent carcinogenic mycotoxin known up to now. To ensure that valid conclusions are drawn by researchers from their genomics-related studies, molecular analyses were carried out to authenticate identities of A. parasiticus strains in the NCBI genome database. RESULTS: Two of the nine supposedly A. parasiticus strains, E1365 and NRRL2999, were found to be misidentified. They turned out to be Aspergillus flavus based on genome-wide single nucleotide polymorphisms (SNPs) and genetic features associated with production of aflatoxin and cyclopiazonic acid. NRRL2999 lacked the additional partial aflatoxin gene cluster known to be present in its equivalent strain, designated as SU-1, and shared a very low total SNPs count specifically with A. flavus NRRL3357 but not with other A. flavus isolates. Therefore, the mislabeled NRRL2999 strain actually is a clonal strain of A. flavus NRRL3357, whose genome was first sequenced in 2005.


Asunto(s)
Aflatoxinas , Aspergillus oryzae , Aspergillus , Aspergillus flavus/genética , Biotecnología
11.
G3 (Bethesda) ; 10(10): 3515-3531, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32817124

RESUMEN

Efforts in genome sequencing in the Aspergillus genus have led to the development of quality reference genomes for several important species including A. nidulans, A. fumigatus, and A. oryzae However, less progress has been made for A. flavus As part of the effort of the USDA-ARS Annual Aflatoxin Workshop Fungal Genome Project, the isolate NRRL3357 was sequenced and resulted in a scaffold-level genome released in 2005. Our goal has been biologically driven, focusing on two areas: isolate variation in aflatoxin production and drought stress exacerbating aflatoxin production by A. flavus Therefore, we developed two reference pseudomolecule genome assemblies derived from chromosome arms for two isolates: AF13, a MAT1-2, highly stress tolerant, and highly aflatoxigenic isolate; and NRRL3357, a MAT1-1, less stress tolerant, and moderate aflatoxin producer in comparison to AF13. Here, we report these two reference-grade assemblies for these isolates through a combination of PacBio long-read sequencing and optical mapping, and coupled them with comparative, functional, and phylogenetic analyses. This analysis resulted in the identification of 153 and 45 unique genes in AF13 and NRRL3357, respectively. We also confirmed the presence of a unique 310 Kb insertion in AF13 containing 60 genes. Analysis of this insertion revealed the presence of a bZIP transcription factor, named atfC, which may contribute to isolate pathogenicity and stress tolerance. Phylogenomic analyses comparing these and other available assemblies also suggest that the species complex of A. flavus is polyphyletic.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Secuencia de Bases , Genoma Fúngico , Filogenia
12.
J Fungi (Basel) ; 6(2)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326370

RESUMEN

We report here the AflR binding motif of Aspergillus flavus for the first time with the aid of ChIP-seq analysis. Of the 540 peak sequences associated with AflR binding events, 66.8% were located within 2 kb upstream (promoter region) of translational start sites. The identified 18-bp binding motif was a perfect palindromic sequence, 5'-CSSGGGWTCGAWCCCSSG'3' with S representing G or C and W representing A or T. On closer examination, we hypothesized that the 18-bp motif sequence identified contained two identical parts (here called motif A and motif B). Motif A was in positions 8-18 on the upper strand, while motif B was in positions 11-1 on the bottom strand. The inferred length and sequence of the putative motif identified in A. flavus were similar to previous findings in A. parasiticus and A. nidulans. Gene ontology analysis indicated that AflR bound to other genes outside the aflatoxin biosynthetic gene cluster.

13.
Appl Microbiol Biotechnol ; 104(6): 2277-2286, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31974722

RESUMEN

Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic precursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and other pigments could facilitate strategies to mitigate fungal pathogenesis.


Asunto(s)
Aspergillus/metabolismo , Vías Biosintéticas , Pigmentos Biológicos/biosíntesis , Esporas Fúngicas/metabolismo , Melaninas/biosíntesis , Metabolismo Secundario
14.
Int J Food Microbiol ; 310: 108313, 2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31476580

RESUMEN

Aflatoxin production of Aspergillus flavus is affected by abiotic factors such as temperature, water activity, oxidative stress, etc. These factors likely affect different metabolic pathways and result in altered aflatoxin production. Aflatoxin was determined in liquid media at 28 °C, solid media at 28 °C and solid media at 37 °C. The proteomic method was used to elucidate the mechanism of aflatoxin production in A. flavus in liquid media at 28 °C, solid media at 28 °C and solid media at 37 °C. Potential factors affecting aflatoxin production were found by GO and KEGG analysis. A. flavus produces more aflatoxin at 28 °C compared to 37 °C. Our study also found that A. flavus cultured on solid media produced more aflatoxin than in liquid media. In this study, we identified 5029 proteins from A. flavus NRRL3357, in which 1547 differential proteins were identified between liquid media and solid-state media, while 546 differential proteins were identified between 28 °C and 37 °C. Biological informatics analysis showed that these differential proteins were widely involved in a variety of biological processes, molecular functions, and cellular components, and were associated with multiple metabolic pathways. Compared to the liquid media, extracellular hydrolase for nutrient uptake and proteins related to sclerotia development were differentially expressed on solid media (p < 0.05). Enzymes involved in oxidative stress showed significantly down-regulated in liquid media and up-regulated at 28 °C (p < 0.05). Furthermore, our research also revealed aflatoxin synthesis is a complex process that is affected by a variety of factors such as nutrient uptake, oxidative stress, sclerotia development, G protein signaling pathways and valine, leucine and isoleucine degradation, and a speculative model summarizing the regulation of aflatoxin biosynthesis in A. flavus is presented.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/metabolismo , Medios de Cultivo/farmacología , Proteoma , Temperatura , Aflatoxinas/genética , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Estrés Oxidativo/genética , Proteómica , Agua/metabolismo
15.
Microbiol Resour Announc ; 8(33)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416879

RESUMEN

Aspergillus flavus produces aflatoxins that adversely impact human health and the economy. We report the genome sequence of A. flavus CA14 that has been widely used in gene function studies. The information will benefit A. flavus functional genomics studies on fungal development, secondary metabolite production, and fungus-host plant interactions.

16.
Appl Microbiol Biotechnol ; 103(12): 4889-4897, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31037381

RESUMEN

Conidia are asexual spores and play a crucial role in fungal dissemination. Conidial pigmentation is important for tolerance against UV radiation and contributes to survival of fungi. The molecular basis of conidial pigmentation has been studied in several fungal species. In spite of sharing the initial common step of polyketide formation, other steps for pigment biosynthesis appear to be species-dependent. In this study, we isolated an Aspergillus flavus spontaneous mutant that produced yellow conidia. The underlying genetic defect, a three-nucleotide in-frame deletion in the gene, AFLA_051390, that encodes a copper-transporting ATPase, was identified by a comparative genomics approach. This genetic association was confirmed by disruption of the wild-type gene. When yellow mutants were grown on medium supplemented with copper ions or chloride ions, green conidial color was partially and nearly completely restored, respectively. Further disruption of AFLA_045660, an orthologue of Aspergillus nidulans yA (yellow pigment) that encodes a multicopper oxidase, in wild type and a derived strain producing dark green conidia showed that it yielded mutants that produced gold conidia. The results placed formation of the gold pigment after that of the yellow pigment and before that of the dark green pigment. Using reported inhibitors of DHN-melanin (tricyclazole and phthalide) and DOPA-melanin (tropolone and kojic acid) pathways on a set of conidial color mutants, we investigated the involvement of melanin biosynthesis in A. flavus conidial pigment formation. Results imply that both pathways have no bearing on conidial pigment biosynthesis of A. flavus.


Asunto(s)
Aspergillus flavus/enzimología , ATPasas Transportadoras de Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/biosíntesis , Esporas Fúngicas/enzimología , Aspergillus flavus/genética , ATPasas Transportadoras de Cobre/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Genómica , Melaninas/biosíntesis , Mutación , Oxidorreductasas/metabolismo , Pigmentación/genética , Esporas Fúngicas/genética
17.
Toxins (Basel) ; 11(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717146

RESUMEN

Aspergillus flavus is a ubiquitous saprophytic fungus found in soils across the world. The fungus is the major producer of aflatoxin (AF) B1, which is toxic and a potent carcinogen to humans. Aflatoxin B1 (AFB1) is often detected in agricultural crops such as corn, peanut, almond, and pistachio. It is a serious and recurrent problem and causes substantial economic losses. Wickerhamomyces anomalus WRL-076 was identified as an effective biocontrol yeast against A. flavus. In this study, the associated molecular mechanisms of biocontrol were investigated. We found that the expression levels of eight genes, aflR, aflJ, norA, omtA, omtB, pksA, vbs, and ver-1 in the aflatoxin biosynthetic pathway cluster were suppressed. The decreases ranged from several to 10,000 fold in fungal samples co-cultured with W. anomalus. Expression levels of conidiation regulatory genes brlA, abaA, and wetA as well as sclerotial regulatory gene (sclR) were all down regulated. Consistent with the decreased gene expression levels, aflatoxin concentrations in cultural medium were reduced to barely detectable. Furthermore, fungal biomass and conidial number were significantly reduced by 60% and more than 95%, respectively. The results validate the biocontrol efficacy of W. anomalus WRL-076 observed in the field experiments.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/fisiología , Agentes de Control Biológico , Contaminación de Alimentos/prevención & control , Regulación Fúngica de la Expresión Génica , Saccharomycetales , Técnicas de Cocultivo , Esporas Fúngicas
18.
Anal Chem ; 90(24): 14331-14338, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30444348

RESUMEN

Aflatoxins, highly toxic and carcinogenic to humans, are synthesized via multiple intermediates by a complex pathway in several Aspergilli, including Aspergillus flavus. Few analytical methods are available for monitoring the changes in metabolite profiles of the aflatoxin biosynthesis pathway under different growth and environmental conditions. In the present study, we developed by a D-optimal mixture design a solvent system, methanol/dichloromethane/ethyl acetate/formic acid (0.36/0.31/0.32/0.01), that was suitable for extracting the pathway metabolites. The matrix effect from dilution of cell extracts was negligible. To facilitate the identification of these metabolites, we constructed a fragmentation ion library. We further employed liquid chromatography coupled with high-resolution mass spectroscopy (UHPLC-HRMS) for simultaneous quantification of the metabolites. The limit of detection (LOD) and limit of quantitation (LOQ) were 0.002-0.016 and 0.008-0.05 µg/kg, respectively. The spiked recovery rates ranged from 81.3 to 100.3% with intraday and interday precision less than 7.6%. Using the method developed to investigate the time-course aflatoxin biosynthesis, we found that precursors, including several possible toxins (with a carcinogenic group similar to aflatoxin B1), occurred together with aflatoxin, and that production increased rapidly at the early growth stage, peaked on day four, and then decreased substantially. The maximum production of aflatoxin B1 and aflatoxin B2 occurred 1 day later. Moreover, the dominant branch pathway was the one for aflatoxin B1 formation. We revealed that the antiaflatoxigenicity mechanism of Leclercia adecarboxylata WT16 was associated with a factor upstream of the aflatoxin biosynthesis pathway. The design strategies can be applied to characterize or detect other secondary metabolites to provide a snapshot of the dynamic changes during their biosynthesis.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/metabolismo , Espectrometría de Masas , Aflatoxinas/química , Aflatoxinas/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos , Solventes/química
19.
Appl Microbiol Biotechnol ; 102(12): 5209-5220, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29696338

RESUMEN

Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 µg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 µg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.


Asunto(s)
Aflatoxinas/genética , Aspergillus flavus/fisiología , Proteínas Fúngicas/genética , Zea mays/microbiología , Aflatoxinas/biosíntesis , Aspergillus flavus/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Esporas Fúngicas/genética , Transcriptoma
20.
Toxins (Basel) ; 9(10)2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29023405

RESUMEN

Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δhbx1 mutants did not produce conidiophores. The inability of Δhbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/genética , Genes Homeobox , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , ADN de Hongos/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Indoles/metabolismo , Filogenia , Metabolismo Secundario , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...