Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(25): eade6415, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352341

RESUMEN

We present the first paleotopographic reconstruction of Taiwan by measuring the hydrogen isotope composition of leaf waxes (δ2HnC29) preserved in 3-Ma and younger sediments of the southern Coastal Range. Plant leaf waxes record the δ2H of precipitation during formation, which is related to elevation. Leaf waxes produced across the orogen are transported and deposited in adjacent sedimentary basins, providing deep-time records of the source elevation of detrital organic matter. δ2HnC29 exported from the southern Taiwan orogen decreased by more than 40‰ since ~1.3-1.5 Ma, indicating an increase of >2 kilometers in the organic source elevation. The increase in organic source elevation is best explained by rapid surface uplift of the southern Central Range at around ~1.3-1.5 Ma and indicates that this part of the orogen was characterized by maximum elevations of at least 3 km at this time. Further increase in organic source elevation from ~0.85 to ~0.3 Ma indicates continued topographic growth to modern elevations.


Asunto(s)
Hidrógeno , Isótopos , Taiwán , Ceras
2.
Sci Rep ; 9(1): 6601, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036842

RESUMEN

Conventional pollution monitoring strategies for heavy metals are often costly and unpractical. Innovative sampling and analytical approaches are therefore needed to efficiently monitor large areas. This study presents a novel, simple, fast, and inexpensive method to monitor heavy metal pollution that uses cation-exchange resin sachets and the micro-XRF core-scanning technique (XRF-CS). The resin passive samplers act as concentrators of cationic species and can be readily deployed spatially and temporally to record pollution signals. The large number of analytical tasks are then overcome by the fast and non-destructive XRF-CS to precisely assess elemental concentrations. Quantifying element loading involves direct comparison with a set of identically prepared and scanned resin reference standards containing Ca, Ti, Cr, Mn, Ni, Cu, Zn, Pb. The results show that within the test range (from 0-1000 s mg kg-1), the calibration lines have excellent regressions (R2 ≥ 0.97), even at the shortest exposure time (1 s). A pilot field survey of a suspected polluted area in central Taiwan, where 30 resin sachets had been deployed, identified a pollution hot spot in a rapid and economical manner. Therefore, this approach has the potential to become a valuable tool in environmental monitoring and forensics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...