Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
RSC Adv ; 11(1): 525-536, 2020 Dec 21.
Article En | MEDLINE | ID: mdl-35423046

Two chromophoric congeners derived from indenoquinoxaline and oxadiazole are designed, synthesized and characterized for their multi-photon properties in the femtosecond time domain. These two model structures are experimentally found to exhibit strong and widely distributed two- and three-photon activities within the spectral range of 680-1500 nm and the larger congener manifests maximum two- and three-photon absorption cross-section values of 2120 GM (at 750 nm) and ∼85 × 10-80 cm6 s2 (at 1280 nm), respectively. Both two- and three-photon absorption-based optical power-limiting performance of a representative model compound are also evaluated and demonstrated.

2.
Nat Chem ; 8(4): 338-46, 2016 Apr.
Article En | MEDLINE | ID: mdl-27001729

A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120--a glycoprotein found on the surface of the virus envelope--thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.


Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Polysaccharides/chemical synthesis , AIDS Vaccines/immunology , HIV Envelope Protein gp120/immunology , Humans , Ligands , Polysaccharides/chemistry , Polysaccharides/immunology
3.
ACS Omega ; 1(5): 773-783, 2016 Nov 30.
Article En | MEDLINE | ID: mdl-30023491

In this study, we report the fabrication of aluminum oxide-coated glass (ACG) slides for the preparation of glycan microarrays. Pure aluminum (Al, 300 nm) was coated on glass slides via electron-beam vapor deposition polymerization (VDP), followed by anodization to form a thin layer (50-65 nm) of aluminum oxide (Al-oxide) on the surface. The ACG slides prepared this way provide a smooth surface for arraying sugars covalently via phosphonate formation with controlled density and spatial distance. To evaluate this array system, a mannose derivative of α-5-pentylphosphonic acid was used as a model for the optimization of covalent arraying based on the fluorescence response of the surface mannose interacting with concanavalin A (ConA) tagged with the fluorescence probe A488. The ACG slide was characterized using scanning electron microscopy, atomic force microscopy (AFM), and ellipsometry, and the sugar loading capacity, uniformity, and structural conformation were also characterized using AFM, a GenePix scanner, and a confocal microscope. This study has demonstrated that the glycan array prepared from the ACG slide is more homogeneous with better spatial control compared with the commonly used glycan array prepared from the N-hydroxysuccinimide-activated glass slide.

4.
J Am Chem Soc ; 135(41): 15382-91, 2013 Oct 16.
Article En | MEDLINE | ID: mdl-24032650

The structural diversity of glycoproteins often comes from post-translational glycosylation with heterogeneous N-glycans. Understanding the complexity of glycans related to various biochemical processes demands a well-defined synthetic sugar library. We report herein a unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α-2,3 linkages. Moreover, using sialyltransferases to install sialic acid can minimize synthetic steps through the use of shared intermediates to simplify the complicated procedures associated with conventional sialic acid chemistry. Furthermore, these synthetic complex oligosaccharides were compiled to create a glycan array for the profiling of HIV-1 broadly neutralizing antibodies PG9 and PG16 that were isolated from HIV infected donors. From the study of antibody PG16, we identified potential natural and unnatural glycan ligands, which may facilitate the design of carbohydrate-based immunogens and hasten the HIV vaccine development.


AIDS Vaccines/chemical synthesis , HIV Antibodies/immunology , HIV/immunology , Polysaccharides/chemical synthesis , Polysaccharides/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Carbohydrate Conformation , HIV/chemistry , HIV Antibodies/chemistry , HIV Antibodies/isolation & purification , Molecular Sequence Data , Polysaccharides/chemistry
5.
J Am Chem Soc ; 135(39): 14831-9, 2013 Oct 02.
Article En | MEDLINE | ID: mdl-24044869

We report here the development of chemoenzymatic methods for the large-scale synthesis of cancer-associated antigens globopentaose (Gb5), fucosyl-Gb5 (Globo H), and sialyl-Gb5 (SSEA4) by using overexpressed glycosyltransferases coupled with effective regeneration of sugar nucleotides, including UDP-Gal, UDP-GalNAc, GDP-Fuc, and CMP-Neu5Ac. The enzymes used in the synthesis were first identified from different species through comparative studies and then overexpressed in E. coli and isolated for synthesis. These methods provide multigram quantities of products in high yield with only two or three purification steps and are suitable for the evaluation and development of cancer vaccines and therapeutics.


Antigens, Tumor-Associated, Carbohydrate/metabolism , Escherichia coli/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Antigens, Tumor-Associated, Carbohydrate/chemistry , Cloning, Molecular , Glycosyltransferases/isolation & purification , Industrial Microbiology , Up-Regulation
6.
J Am Chem Soc ; 132(38): 13371-80, 2010 Sep 29.
Article En | MEDLINE | ID: mdl-20822102

A new type of glycan array covalently or noncovalently attached to aluminum oxide-coated glass (ACG) slides has been developed for studies of enzymatic reactions and protein binding. To prepare the noncovalent array, glycans with a polyfluorinated hydrocarbon (-C(8)F(17)) tail are spotted robotically onto the ACG slide surface containing a layer of polyfluorinated hydrocarbon terminated with phosphonate. After incubation and washing, the noncovalent array can be characterized by MS-TOF via ionization/desorption at a low laser energy without addition of matrix. A representative cellotetraose array was developed to study the activity and specificity of different cellulases and to differentiate the exo- and endoglucanase activities. To prepare the covalent array, glycans with a phosphonic acid tail were synthesized and spotted robotically onto the ACG slide surface. After incubation, the slides can be used directly for quantitative protein binding analysis. Compared to the preparation of glycan arrays on glass slides and other surfaces, this method of arraying using phosphonic acid reacting with ACG is more direct, convenient, and effective and represents a new platform for the high-throughput analysis of protein-glycan interactions.


Aluminum Oxide/chemistry , Glass , Organophosphonates/chemistry , Polysaccharides/chemistry , Cellulase/chemistry , Mass Spectrometry
...