Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Pharmacol ; 15: 1329409, 2024.
Article En | MEDLINE | ID: mdl-38357305

Introduction: The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has facilitated the development of precision oncology. Two first-generation NTRK inhibitors (larotrectinib and entrectinib) are currently approved for the treatment of patients with solid tumors harboring NTRK gene fusions. Nevertheless, comprehensive NTRK profiling at the pan-cancer genomic level and real-world studies pertaining to the adverse events of NTRK inhibitors are lacking. Methods: We characterize the genome of NTRK at the pan-cancer level through multi-omics databases such as The Cancer Genome Atlas (TCGA). Through the FDA Adverse Event Reporting System (FAERS) database, we collect reports of entrectinib and larotrectinib-induced adverse events and perform a pharmacovigilance analysis using various disproportionality methods. Results: NTRK1/2/3 expression is lower in most tumor tissues, while they have higher methylation levels. NTRK gene expression has prognostic value in some cancer types, such as breast invasive carcinoma (BRCA). The cancer type with highest NTRK alteration frequency is skin cutaneous melanoma (SKCM) (31.98%). Thyroid carcinoma (THCA) has the largest number of NTRK fusion cases, and the most common fusion pair is ETV6-NTRK3. Adverse drug events (ADEs) obtained from the FAERS database for larotrectinib and entrectinib are 524 and 563, respectively. At the System Organ Class (SOC) level, both drugs have positive signal value for "nervous system disorder". Other positive signals for entrectinib include "cardiac disorders", "metabolism and nutrition disorders", while for larotrectinib, it is "hepatobiliary disorders". The unexpected signals are also listed in detail. ADEs of the two NTRK inhibitors mainly occur in the first month. The median onset time of ADEs for entrectinib and larotrectinib was 16 days (interquartile range [IQR] 6-86.5) and 44 days ([IQR] 7-136), respectively. Conclusion: Our analysis provides a broad molecular view of the NTRK family. The real-world adverse drug event analysis of entrectinib and larotrectinib contributes to more refined medication management.

2.
Immun Inflamm Dis ; 11(5): e866, 2023 05.
Article En | MEDLINE | ID: mdl-37249290

Hepatitis B virus (HBV) infection remains a global health challenge. Despite the availability of effective preventive vaccines, millions of people are at risk of cirrhosis and hepatocellular carcinoma. Current drug therapies inhibit viral replication, slow the progression of liver fibrosis and reduce infectivity, but they rarely remove the covalently sealed circular DNA (cccDNA) of the virus that causes HBV persistence. Alternative treatment strategies, including those based on CRISPR/cas9 knockout virus gene, can effectively inhibit HBV replication, so it has a good prospect. During chronic infection, some virus gene knockouts based on CRISPR/cas9 may even lead to cccDNA inactivation. This paper reviews the progress of different HBV CRISPR/cas9, vectors for delivering to the liver, and the current situation of preclinical and clinical research.


Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , CRISPR-Cas Systems , Hepatitis B/drug therapy , Hepatitis B/genetics , DNA, Circular/genetics , DNA, Circular/pharmacology
3.
J Med Virol ; 95(2): e28552, 2023 02.
Article En | MEDLINE | ID: mdl-36734062

The increasing incidence of sexually transmitted diseases in women, including human papillomavirus (HPV) infection, has led to the need to develop user-friendly potential prevention methods. At present, although there are several therapeutic parts, none of them has a preventive effect, but they are only limited to providing patients with symptom relief. Researchers have now recognized the need to find effective local preventive agents. One of the potential undiscovered local fungicides is the vaginal delivery of CRISPR/Cas9. CRISPR/Cas9 delivery involves silencing gene expression in a sequence-specific manner in the pathogenic agent, thus showing microbicidal activity. However, vaginal mucosal barrier and physiological changes (such as pH value and variable epithelial thickness in the menstrual cycle) are the main obstacles to effective delivery and cell uptake of CRISPR/Cas9. To enhance the vaginal delivery of CRISPR/Cas9, so far, nano-carrier systems such as lipid delivery systems, macromolecular systems, polymer nanoparticles, aptamers, and cell-penetrating peptides have been extensively studied. In this paper, various nano-carriers and their prospects in the preclinical stage are described, as well as the future significance of CRISPR/Cas9 vaginal delivery based on nano-carriers.


Nanoparticles , Papillomavirus Infections , Humans , Female , CRISPR-Cas Systems , Gene Editing/methods , Papillomavirus Infections/genetics , Gene Silencing
4.
Technol Cancer Res Treat ; 21: 15330338221110668, 2022.
Article En | MEDLINE | ID: mdl-35770296

Background: Ovarian cancer is a highly malignant gynecological cancer. Aerobic glycolysis is one of the features of cancer cell metabolism. Studying the molecular modulation of the Warburg effect in ovarian cancer is significantly valuable for understanding the progression mechanism of ovarian cancer. Materials and Methods: The expression level and prognostic significance of DNMT3A were analyzed using public databases. DNMT3A was overexpressed by plasmid transfection, and DNMT3A was interfered with specific siRNAs transfection. miR-603 was overexpressed by mimic transfection or inhibited by inhibitor transfection. The expression of the molecules was detected by qPCR or western blotting. CCK-8 and transwell assays were used to determine the cell proliferation, migration, and invasion abilities of ovarian cancer. Results: We found that the DNMT3A protein level was higher in ovarian cancer tissues than in normal ovary tissues, but the mRNA level had no significant difference in ovarian cancer tissues and normal ovary tissues. The higher the RNA level of DNMT3A, the poorer prognosis of patients. DNMT3A knocking down impeded the Warburg effect, cell proliferation, migration, and invasion of ovarian cancer cells. Further investigations discovered that DNMT3A promoted ovarian cancer cell malignancy via silencing miR-603. Conclusion: We found that patients who overexpressed DNMT3A showed a poor prognosis. DNMT3A was found to promote the Warburg effect, cell proliferation, migration, and invasion of ovarian cancer by inhibiting the expression of miR-603. As a result, the research revealed that DNMT3A/miR-603/HK2 axis contributed to the Warburg effect of ovarian cancer and DNMT3A may be a potential therapeutic target for ovarian cancer.


MicroRNAs , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/pathology
...