Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.055
1.
Sci Rep ; 14(1): 12884, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839838

The aim of this study was to develop a real-time risk prediction model for extrauterine growth retardation (EUGR). A total of 2514 very preterm infants were allocated into a training set and an external validation set. The most appropriate independent variables were screened using univariate analysis and Lasso regression with tenfold cross-validation, while the prediction model was designed using binary multivariate logistic regression. A visualization of the risk variables was created using a nomogram, while the calibration plot and receiver operating characteristic (ROC) curves were used to calibrate the prediction model. Clinical efficacy was assessed using the decision curve analysis (DCA) curves. Eight optimal predictors that namely birth weight, small for gestation age (SGA), hypertensive disease complicating pregnancy (HDCP), gestational diabetes mellitus (GDM), multiple births, cumulative duration of fasting, growth velocity and postnatal corticosteroids were introduced into the logistic regression equation to construct the EUGR prediction model. The area under the ROC curve of the training set and the external verification set was 83.1% and 84.6%, respectively. The calibration curve indicate that the model fits well. The DCA curve shows that the risk threshold for clinical application is 0-95% in both set. Introducing Birth weight, SGA, HDCP, GDM, Multiple births, Cumulative duration of fasting, Growth velocity and Postnatal corticosteroids into the nomogram increased its usefulness for predicting EUGR risk in very preterm infants.


Gestational Age , Infant, Premature , ROC Curve , Humans , Infant, Newborn , Female , Infant, Premature/growth & development , Pregnancy , Male , Nomograms , Birth Weight , Infant, Small for Gestational Age/growth & development , Risk Factors , Diabetes, Gestational/diagnosis , Fetal Growth Retardation/diagnosis , Logistic Models
2.
PLoS One ; 19(6): e0304707, 2024.
Article En | MEDLINE | ID: mdl-38829882

BACKGROUND: Parental feeding practices (PFPs) play a key role in fostering preschoolers' dietary habits and in mitigating the risk of childhood obesity. Nevertheless, parents often employ inappropriate feeding practices, leading to children's potential nutrition-related issues. Thus, research is needed to inform interventions that focus on optimizing feeding practices. METHODS: This protocol describes the evaluation of a novel intervention-Empowering Parents to Optimize Feeding Practices (EPO-Feeding Program). The program will be evaluated with a two-arm feasibility randomized controlled trial (RCT) in Yangzhou, China. The program includes four weekly group-based training sessions led by healthcare professionals for parents of preschool children. The intervention incorporates sessions, group discussions, motivational interviewing, and supplementary materials (e.g., key messages and educational videos) aimed at enhancing parents' knowledge, skills, and behaviours related to feeding practices. The primary outcomes include i) implementation feasibility, primarily assessed through retention rates; and ii) program acceptability through a survey and qualitative process evaluation. Secondary outcomes encompass the potential impacts on i) PFPs, ii) parental perception of child weight (PPCW), iii) parenting sense of competence, iv) children's eating behaviours, and v) child weight status. Quantitative analyses include descriptive estimates for evaluating the feasibility and linear mixed regression analysis for testing the potential effects. Qualitative valuation will use thematic framework analysis. DISCUSSION: If this study shows this program to be feasible to implement and acceptable to parents, it will be used to inform a fully powered trial to determine its effectiveness. The research will also help inform policy and practices in the context of child nutrition promotion, particularly regarding implementing group-based training sessions by healthcare providers in similar settings. TRIAL REGISTRATION: Clinicaltrials.gov, Protocol #NCT06181773, 20/11/2023.


Feasibility Studies , Feeding Behavior , Parents , Humans , Child, Preschool , Feeding Behavior/psychology , Parents/psychology , Female , Male , Parenting/psychology , Pediatric Obesity/prevention & control , China
4.
Neural Netw ; 177: 106401, 2024 May 21.
Article En | MEDLINE | ID: mdl-38805793

Fluid motion can be considered as a point cloud transformation when using the SPH method. Compared to traditional numerical analysis methods, using machine learning techniques to learn physics simulations can achieve near-accurate results, while significantly increasing efficiency. In this paper, we propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network, which employs a dual-pipeline architecture, seamlessly integrated with an Attention-based Feature Fusion Module. Unlike previous methods, which often make difficult trade-offs between global fluid control and physical law constraints, we find a way to achieve a better balance between these two crucial aspects with a well-designed dual-pipeline approach. Additionally, we design a Type-aware Input Module to adaptively recognize particles of different types and perform feature fusion afterward, such that fluid-solid coupling issues can be better dealt with. Furthermore, we propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes. The experiments demonstrate that our approach not only attains a quantitative enhancement in various metrics, surpassing the state-of-the-art methods, but also signifies a qualitative leap in neural network-based simulation by faithfully adhering to the physical laws. Code and video demonstrations are available at https://github.com/chenyu-xjtu/DualFluidNet.

5.
Int J Hematol ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38814500

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.

6.
Anal Chem ; 96(19): 7487-7496, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695134

Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.

7.
Med Oncol ; 41(6): 160, 2024 May 20.
Article En | MEDLINE | ID: mdl-38763968

Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. The pathology of PTC is far from clear. As a kinase that can be targeted, the role of TNIK in PTC has not been investigated. This study was focused on the effects and molecular mechanisms of TNIK in PTC. Both public datasets and clinical specimens were used to verify TNIK expression. The effects of TNIK were investigated in both cell lines and mice models. Transcriptome analysis was used to explore the underlying mechanism of TNIK. Immunofluorescence, wound healing, and qRT-PCR assays were used to validate the mechanism of TNIK in PTC. The therapeutic effects of TNIK inhibitor NCB-0846 were evaluated by flow cytometry, western blot, and subcutaneous xenografts mice. TNIK expression was upregulated in PTC tissues. TNIK knockdown could suppress cell proliferation and tumor growth in no matter cell models or nude mice. The transcriptome analysis, GO enrichment analysis, and GSEA analysis results indicated TNIK was highly correlated with cytoskeleton, cell motility, and Wnt pathways. The mechanistic studies demonstrated that TNIK regulated cytoskeleton remodeling and promoted cell migration. NCB-0846 significantly inhibited TNIK kinase activity, induced cell apoptosis, and activated apoptosis-related proteins in a dose-dependent manner. In addition, NCB-0846 inhibited tumor growth in tumor-bearing mice. In summary, we proposed a novel regulatory mechanism in which TNIK-mediated cytoskeleton remodeling and cell migration to regulate tumor progression in PTC. TNIK is a therapeutic target in PTC and NCB-0846 would act as a novel targeted drug for PTC therapy.


Cell Proliferation , Thyroid Cancer, Papillary , Thyroid Neoplasms , Animals , Female , Humans , Male , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Xenograft Model Antitumor Assays
8.
ACS Biomater Sci Eng ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38800901

Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.

9.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38812381

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Auditory Cortex , Electroencephalography , Evoked Potentials, Auditory , Magnetoencephalography , Humans , Magnetoencephalography/instrumentation , Evoked Potentials, Auditory/physiology , Auditory Cortex/physiology , Electroencephalography/instrumentation , Electroencephalography/methods , Adult , Male
10.
Heliyon ; 10(7): e28190, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38596033

Food security is closely related to the development of human society, and the root of food production lies in cultivated land, with water conservancy as its lifeline. This study estimates the ecological water consumption of located in the arid region of Northwest China (the Karamay region and Muzat River basin) from 1990 to 2020 based on the optimized Land Surface Energy Balance Algorithm. The verification accuracy of SEBAL energy balance model is greatly improved after optimization. It was showed an increasing trend in the Karamay region and Muzat River basin, increasing at the rates of 2.84 mm/year and 2.86 mm/year respectively. The suitability of cultivated land was evaluated by combining four periods of 30 m spatial resolution land use/land cover data from 1990, 2000, 2010, and 2020, as well as the Hydrological Statistical Yearbook and Xinjiang Statistical Yearbook. Through the analysis of spatial optimization for cultivated land, it can be inferred that the primary limiting factors affecting cultivated land suitability in the Karamay region are irrigation guarantee rate (54.03%) and soil salinity (11.98%). Muzat River region are irrigation guarantee rate (32.19%) and soil salinity (18.62%). By comparing the scenarios of setting ecological priority and cultivated land priority, it is concluded that under the conditions of water resource constraints and 50%, 75% and 90% design irrigation assurance rates, Karamay still has cultivated land expansion potential, which can be used as the main preparatory reclamation area. In addition to the traditional agriculture irrigation area, the Muzat River basin still has development potential under the condition of ecological priority and no more than 75% irrigation design assurance rate. The study on the cultivated land suitability under the condition of water resource constraints can provide new ideas for food security.

11.
Article En | MEDLINE | ID: mdl-38647185

Thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), prefibrotic/early (pre-PMF), and overt fibrotic PMF (overt PMF) are classical Philadelphia-Negative (Ph-negative) myeloproliferative neoplasms (MPNs). Differentiating between these types based on morphology and molecular markers is challenging. This study aims to clarify the application of flow cytometry in the diagnosis and differential diagnosis of classical MPNs. This study retrospectively analyzed the immunophenotypes, clinical characteristics, and laboratory findings of 211 Ph-negative MPN patients, including ET, PV, pre-PMF, overt PMF, and 47 controls. Compared to ET and PV, PMF differed in white blood cells, hemoglobin, blast cells in the peripheral blood, abnormal karyotype, and WT1 gene expression. PMF also differed from controls in CD34+ cells, granulocyte phenotype, monocyte phenotype, percentage of plasma cells, and dendritic cells. Notably, the PMF group had a significantly lower plasma cell percentage compared with other groups. A lasso and random forest model select five variables (CD34+CD19+cells and CD34+CD38- cells on CD34+cells, CD13dim+CD11b- cells in granulocytes, CD38str+CD19+/-plasma, and CD123+HLA-DR-basophils), which identify PMF with a sensitivity and specificity of 90%. Simultaneously, a classification and regression tree model was constructed using the percentage of CD34+CD38- on CD34+ cells and platelet counts to distinguish between ET and pre-PMF, with accuracies of 94.3% and 83.9%, respectively. Flow immunophenotyping aids in diagnosing PMF and differentiating between ET and PV. It also helps distinguish pre-PMF from ET and guides treatment decisions.

12.
Opt Express ; 32(7): 11193-11201, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38570973

Bound states in the continuum (BICs) allow to obtain an ultrahigh-quality-factor optical cavity. Nevertheless, BICs must be extended in one or more directions, substantially increasing the device footprint. Although super-cavity mode quasi-BICs supported by single nanopillars have been demonstrated recently, their low-quality factor and localized electromagnetic field inside the dielectric nanopillar are insufficient for high-sensitivity refractive index sensing applications. We propose a ring structure rotated by a dielectric sectorial nanostructure, which can achieve a high quality factor by breaking the rotational symmetry of the ring structure with a footprint as small as 3 µm2. As a straightforward application, we demonstrate high performance local refractive index and nanoscale film thickness sensing based on rotational symmetry breaking induced BICs. These BICs reach quality factor and sensitivity of one order of magnitude better than those of conventional super-cavity mode BICs. The proposed method provides insights into the design of compact high quality factor photonic devices, opening up new possibilities for applications in refractive index and nanoscale film thickness sensing.

13.
Sci Rep ; 14(1): 9596, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671007

We aimed to analyze the risk factors and construct a new nomogram to predict non-sentinel lymph node (NSLN) metastasis for cT1-2 breast cancer patients with positivity after sentinel lymph node biopsy (SLNB). A total of 830 breast cancer patients who underwent surgery between 2016 and 2021 at multi-center were included in the retrospective analysis. Patients were divided into training (n = 410), internal validation (n = 298), and external validation cohorts (n = 122) based on periods and centers. A nomogram-based prediction model for the risk of NSLN metastasis was constructed by incorporating independent predictors of NSLN metastasis identified through univariate and multivariate logistic regression analyses in the training cohort and then validated by validation cohorts. The multivariate logistic regression analysis revealed that the number of positive sentinel lymph nodes (SLNs) (P < 0.001), the proportion of positive SLNs (P = 0.029), lymph-vascular invasion (P = 0.029), perineural invasion (P = 0.023), and estrogen receptor (ER) status (P = 0.034) were independent risk factors for NSLN metastasis. The area under the receiver operating characteristics curve (AUC) value of this model was 0.730 (95% CI 0.676-0.785) for the training, 0.701 (95% CI 0.630-0.773) for internal validation, and 0.813 (95% CI 0.734-0.891) for external validation cohorts. Decision curve analysis also showed that the model could be effectively applied in clinical practice. The proposed nomogram estimated the likelihood of positive NSLNs and assisted the surgeon in deciding whether to perform further axillary lymph node dissection (ALND) and avoid non-essential ALND as well as postoperative complications.


Breast Neoplasms , Lymphatic Metastasis , Nomograms , Sentinel Lymph Node Biopsy , Sentinel Lymph Node , Humans , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Lymphatic Metastasis/pathology , Middle Aged , Sentinel Lymph Node Biopsy/methods , Sentinel Lymph Node/pathology , Sentinel Lymph Node/surgery , Retrospective Studies , Aged , Adult , Risk Factors , ROC Curve , Lymph Nodes/pathology , Lymph Nodes/surgery
14.
Front Pediatr ; 12: 1341221, 2024.
Article En | MEDLINE | ID: mdl-38510082

Background: Hyperglycemia in pregnancy (HGP) has generally been considered a risk factor associated with adverse outcomes in offspring, but its impact on the short-term outcomes of very preterm infants remains unclear. Methods: A secondary analysis was performed based on clinical data collected prospectively from 28 hospitals in seven regions of China from September 2019 to December 2020. According to maternal HGP, all infants were divided into the HGP group or the non-HGP group. A propensity score matching analysis was used to adjust for confounding factors, including gestational age, twin or multiple births, sex, antenatal steroid administration, delivery mode and hypertensive disorders of pregnancy. The main complications and the short-term growth status during hospitalization were evaluated in the HGP and non-HGP groups. Results: A total of 2,514 infants were eligible for analysis. After matching, there were 437 infants in the HGP group and 874 infants in the non-HGP group. There was no significant difference between the two groups in main complications including respiratory distress syndrome, bronchopulmonary dysplasia, necrotizing enterocolitis, retinopathy of prematurity, patent ductus arteriosus, culture positive sepsis, intraventricular hemorrhage, periventricular leukomalacia, anemia, feeding intolerance, metabolic bone disease of prematurity, or parenteral nutrition-associated cholestasis. The incidences of extrauterine growth retardation and increased growth retardation for weight and head circumference in the non-HGP group were all higher than those in the HGP group after matching (P < 0.05). Conclusions: HGP did not worsen the short-term outcomes of the surviving very preterm infants, as it did not lead to a higher risk of the main neonatal complications, and the infants' growth improved during hospitalization.

15.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38535171

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Chenopodiaceae , Soil , Soil/chemistry , Saline Solution , Sodium Chloride , Nitrification , Salt-Tolerant Plants
16.
Neuron ; 112(11): 1815-1831.e4, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38492574

Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1+/+, Trpv1-/-, and Trpv1T634A/T634A. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT. We identified the S4-S5 linker region exposed to the vanilloid pocket of TRPV1 to be critical for hyperthermia associated with certain TRPV1 antagonists. PSFL2874, a TRPV1 antagonist we discovered, is effective against inflammatory pain but devoid of binding to the S4-S5 linker and inducing CBT changes. These findings implicate that biased allosteric mechanisms exist for TRPV1 coupling to nociception and CBT regulation, opening avenues for the development of non-opioid analgesics without affecting CBT.


Body Temperature , Nociception , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Mice , Allosteric Regulation/drug effects , Nociception/drug effects , Nociception/physiology , Body Temperature/drug effects , Analgesics/pharmacology , Male , Humans , Mice, Inbred C57BL , Mice, Knockout , Pain/metabolism , Pain/drug therapy
17.
BMC Pediatr ; 24(1): 172, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38459440

BACKGROUND: Necrotizing enterocolitis (NEC) is a serious gastrointestinal disease, primarily affects preterm newborns and occurs after 7 days of life (late-onset NEC, LO-NEC). Unfortunately, over the past several decades, not much progress has been made in its treatment or prevention. This study aimed to analyze the risk factors for LO-NEC, and the impact of LO-NEC on short-term outcomes in very preterm infants (VPIs) with a focus on nutrition and different onset times. METHOD: Clinical data of VPIs were retrospectively collected from 28 hospitals in seven different regions of China from September 2019 to December 2020. A total of 2509 enrolled VPIs were divided into 2 groups: the LO-NEC group and non-LO-NEC group. The LO-NEC group was divided into 2 subgroups based on the onset time: LO-NEC occurring between 8 ~ 14d group and LO-NEC occurring after 14d group. Clinical characteristics, nutritional status, and the short-term clinical outcomes were analyzed and compared among these groups. RESULTS: Compared with the non-LO-NEC group, the LO-NEC group had a higher proportion of anemia, blood transfusion, and invasive mechanical ventilation (IMV) treatments before NEC; the LO-NEC group infants had a longer fasting time, required longer duration to achieve the target total caloric intake (110 kcal/kg) and regain birthweight, and showed slower weight growth velocity; the cumulative dose of the medium-chain and long-chain triglyceride (MCT/LCT) emulsion intake in the first week after birth was higher and breastfeeding rate was lower. Additionally, similar results including a higher proportion of IMV, lower breastfeeding rate, more MCT/LCT emulsion intake, slower growth velocity were also found in the LO-NEC group occurring between 8 ~ 14d when compared to the LO-NEC group occurring after 14 d (all (P < 0.05). After adjustment for the confounding factors, high proportion of breastfeeding were identified as protective factors and long fasting time before NEC were identified as risk factors for LO-NEC; early feeding were identified as protective factors and low gestational age, grade III ~ IV neonatal respiratory distress syndrome (NRDS), high accumulation of the MCT/LCT emulsion in the first week were identified as risk factors for LO-NEC occurring between 8 ~ 14d. Logistic regression analysis showed that LO-NEC was a risk factor for late-onset sepsis, parenteral nutrition-associated cholestasis, metabolic bone disease of prematurity, and extrauterine growth retardation. CONCLUSION: Actively preventing premature birth, standardizing the treatment of grade III ~ IV NRDS, and optimizing enteral and parenteral nutrition strategies may help reduce the risk of LO-NEC, especially those occurring between 8 ~ 14d, which may further ameliorate the short-term clinical outcome of VPIs. TRIAL REGISTRATION: ChiCTR1900023418 (26/05/2019).


Enterocolitis, Necrotizing , Infant, Premature, Diseases , Respiratory Distress Syndrome, Newborn , Female , Infant, Newborn , Humans , Infant, Premature , Nutritional Status , Enterocolitis, Necrotizing/epidemiology , Enterocolitis, Necrotizing/etiology , Enterocolitis, Necrotizing/prevention & control , Emulsions , Retrospective Studies , Infant, Premature, Diseases/epidemiology , Infant, Premature, Diseases/etiology , Infant, Premature, Diseases/prevention & control , Risk Factors
18.
Polymers (Basel) ; 16(5)2024 Mar 03.
Article En | MEDLINE | ID: mdl-38475376

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.

19.
J Headache Pain ; 25(1): 29, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38454376

BACKGROUND: Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS: Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS: Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1ß, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS: AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.


Migraine Disorders , Nitroglycerin , Mice , Animals , Nitroglycerin/adverse effects , Microglia/metabolism , AMP-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Calcitonin Gene-Related Peptide/metabolism , Central Nervous System Sensitization/physiology , Neurogenic Inflammation/metabolism , Pain/metabolism , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism
20.
CNS Neurosci Ther ; 30(2): e14592, 2024 02.
Article En | MEDLINE | ID: mdl-38385622

AIMS: Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS: Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION: These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.


Iron , Melatonin , Mice , Humans , Animals , Iron/metabolism , Endothelial Cells/metabolism , Brain/metabolism , Circadian Rhythm/genetics , Period Circadian Proteins/genetics
...