Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Microbiol Spectr ; : e0000424, 2024 May 15.
Article En | MEDLINE | ID: mdl-38747636

Kidney transplant recipients (KTRs) have been identified as a population at increased risk for severe SARS-CoV-2 infection outcomes. This study focused on understanding the immune response of KTRs post-vaccination, specifically examining both serological and cellular responses to the SARS-CoV-2 vaccine. Thirteen individuals, including seven KTRs and six healthy donors, were evaluated for antibody levels and T cell responses post-vaccination. The study revealed that KTRs had significantly lower serological responses, including reduced anti-receptor binding domain (RBD) binding antibodies and neutralizing antibodies against the Wuhan, Delta, and Omicron BA.2 strains. Additionally, KTRs demonstrated weaker CD8 T cell cytotoxic responses and lower Th1 cytokine secretion, particularly IFN-γ, after stimulation with variant spike peptide pools. These findings highlight the compromised immunity in KTRs post-vaccination and underscore the need for tailored strategies to bolster immune responses in this vulnerable group. Further investigations are warranted into the mechanisms underlying reduced vaccine efficacy in KTRs and potential therapeutic interventions. IMPORTANCE: Some studies have revealed that KTRs had lower serological response against SARS-CoV-2 than healthy people. Nevertheless, limited studies investigate the cellular response against SARS-CoV-2 in KTRs receiving SARS-CoV-2 vaccines. Here, we found that KTRs have lower serological and cellular responses. Moreover, we found that KTRs had a significantly lower IFN-γ secretion than healthy individuals when their PBMCs were stimulated with SARS-CoV-2 spike peptide pools. Thus, our findings suggested that additional strategies are needed to enhance KTR immunity triggered by the vaccine.

2.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637878

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19 Vaccines , Dasatinib , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Spike Glycoprotein, Coronavirus , Protein Binding
3.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38174926

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Capsid Proteins , Enterovirus A, Human , Enterovirus Infections , RNA-Dependent RNA Polymerase , Animals , Mice , Antibodies, Viral/immunology , Codon , Enterovirus A, Human/genetics , Enterovirus Infections/immunology , Vaccines, Attenuated , Capsid Proteins/genetics , Immunity, Humoral , Immunity, Cellular , Antibodies, Neutralizing/immunology , Viral Vaccines , Mice, Inbred ICR , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics
4.
Microbiol Spectr ; : e0344522, 2023 Feb 21.
Article En | MEDLINE | ID: mdl-36809164

The ChAdOx1 nCoV-19 (AZD1222) vaccine is one of the most commonly delivered SARS-CoV-2 vaccines worldwide; however, few clinical studies have investigated its immunogenicity in dialysis patients. We prospectively enrolled 123 patients on maintenance hemodialysis at a medical center in Taiwan. All patients were infection-naive, had received two doses of the AZD1222 vaccine, and were monitored for 7 months. The primary outcomes were anti-SARS-CoV-2 receptor-binding domain (RBD) antibody concentrations before and after each dose and 5 months after the second dose and neutralization capacity against ancestral SARS-CoV-2, delta, and omicron variants. The anti-SARS-CoV-2 RBD antibody titers significantly increased with time following vaccination, with a peak at 1 month after the second dose (median titer, 498.8 U/mL; interquartile range, 162.5 to 1,050 U/mL), and a 4.7-fold decrease at 5 months. At 1 month after the second dose, 84.6, 83.7, and 1.6% of the participants had neutralizing antibodies against the ancestral virus, delta variant, and omicron variant, respectively, measured by a commercial surrogate neutralization assay. The geometric mean 50% pseudovirus neutralization titers for the ancestral virus, delta variant, and omicron variant were 639.1, 264.2, and 24.7, respectively. The anti-RBD antibody titers correlated well with neutralization capacity against the ancestral virus and delta variant. Transferrin saturation and C-reactive protein were associated with neutralization against the ancestral virus and delta variant. Although two doses of the AZD1222 vaccine initially elicited high anti-RBD antibody titers and neutralization against the ancestral virus and delta variant in hemodialysis patients, neutralizing antibodies against omicron variant were rarely detected, and the anti-RBD and neutralization antibodies waned over time. Additional/booster vaccinations are warranted in this population. IMPORTANCE Patients with kidney failure have worse immune response following vaccination compared to general population, but few clinical studies have investigated immunogenicity of ChAdOx1 nCoV-19 (AZD1222) vaccination in hemodialysis patients. Here, we showed two doses of AZD1222 vaccines lead to high seroconversion rate of anti-SARS-CoV-2 receptor-binding domain (RBD) antibodies, and more than 80% patients acquired neutralizing antibodies against ancestral virus and delta variant. However, seldom did they obtain neutralizing antibodies against the omicron variant. The geometric mean 50% pseudovirus neutralization titer against the ancestral virus was 25.9-fold higher than that against the omicron variant. Also, there was a substantial decay in anti-RBD titers with time. Our findings provided evidence supporting that more protective measures, including additional/booster vaccinations, is warranted in these patients during the current COVID-19 pandemic.

5.
Front Immunol ; 13: 1023943, 2022.
Article En | MEDLINE | ID: mdl-36458016

Broadly neutralizing ability is critical for developing the next-generation SARS-CoV-2 vaccine. We collected sera samples between December 2021-January 2022 from 113 Taiwan naïve participants after their second dose of homologous vaccine (AZD1222, mRNA-1273, BNT162-b2, and MVC-COV1901) and compared the differences in serological responses of various SARS-CoV-2 vaccines. Compared to AZD1222, the two mRNA vaccines could elicit a higher level of anti-S1-RBD binding antibodies with higher broadly neutralizing ability evaluated using pseudoviruses of various SARS-CoV-2 lineages. The antigenic maps produced from the neutralization data implied that Omicron represents very different antigenic characteristics from the ancestral lineage. These results suggested that constantly administering the vaccine with ancestral Wuhan spike is insufficient for the Omicron outbreak. In addition, we found that anti-ACE2 autoantibodies were significantly increased in all four vaccinated groups compared to the unvaccinated pre-pandemic group, which needed to be investigated in the future.


COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , Taiwan/epidemiology , COVID-19/prevention & control
6.
Front Immunol ; 13: 941923, 2022.
Article En | MEDLINE | ID: mdl-36045680

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each disease or promote disease severity. In this study, we confirmed that antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain (S1-RBD) were significantly increased in dengue patients compared to normal controls. In addition, anti-S1-RBD IgG purified from S1-RBD hyperimmune rabbit sera could cross-react with both DENV envelope protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV E and NS1 recognized by these antibodies were identified by a phage-displayed random peptide library. In addition, DENV infection and DENV NS1-induced endothelial hyperpermeability in vitro were inhibited in the presence of anti-S1-RBD IgG. Passive transfer anti-S1-RBD IgG into mice also reduced prolonged bleeding time and decreased NS1 seral level in DENV-infected mice. Lastly, COVID-19 patients' sera showed neutralizing ability against dengue infection in vitro. Thus, our results suggest that the antigenic cross-reactivity between the SARS-CoV-2 S1-RBD and DENV can induce the production of anti-SARS-CoV-2 S1-RBD antibodies that cross-react with DENV which may hinder dengue pathogenesis.


COVID-19 , Dengue Virus , Dengue , Animals , Antibodies, Viral , Humans , Immunoglobulin G , Mice , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Nonstructural Proteins
7.
Front Microbiol ; 13: 894200, 2022.
Article En | MEDLINE | ID: mdl-35865937

Due to the nature of RNA viruses, their high mutation rates produce a population of closely related but genetically diverse viruses, termed quasispecies. To determine the role of quasispecies in DENV disease severity, 22 isolates (10 from mild cases, 12 from fatal cases) were obtained, amplified, and sequenced with Next Generation Sequencing using the Illumina MiSeq platform. Using variation calling, unique wildtype nucleotide positions were selected and analyzed for variant nucleotides between mild and fatal cases. The analysis of variant nucleotides between mild and fatal cases showed 6 positions with a significant difference of p < 0.05 with 1 position in the structural region, and 5 positions in the non-structural (NS) regions. All variations were found to have a higher percentage in fatal cases. To further investigate the genetic changes that affect the virus's properties, reverse genetics (rg) viruses containing substitutions with the variations were generated and viral growth properties were examined. We found that the virus variant rgNS5-T7812G (G81G) had higher replication rates in both Baby hamster kidney cells (BHK-21) and Vero cells while rgNS5-C9420A (A617A) had a higher replication rate only in BHK-21 cells compared to wildtype virus. Both variants were considered temperature sensitive whereby the viral titers of the variants were relatively lower at 39°C, but was higher at 35 and 37°C. Additionally, the variants were thermally stable compared to wildtype at temperatures of 29, 37, and 39°C. In conclusion, viral quasispecies found in isolates from the 2015 DENV epidemic, resulted in variations with significant difference between mild and fatal cases. These variations, NS5-T7812G (G81G) and NS5-C9420A (A617A), affect viral properties which may play a role in the virulence of DENV.

8.
Front Immunol ; 13: 868724, 2022.
Article En | MEDLINE | ID: mdl-35603169

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus responsible for the ongoing COVID-19 pandemic. SARS-CoV-2 binds to the human cell receptor angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain in the S1 subunit of the spike protein (S1-RBD). The serum levels of autoantibodies against ACE2 are significantly higher in patients with COVID-19 than in controls and are associated with disease severity. However, the mechanisms through which these anti-ACE2 antibodies are induced during SARS-CoV-2 infection are unclear. In this study, we confirmed the increase in antibodies against ACE2 in patients with COVID-19 and found a positive correlation between the amounts of antibodies against ACE2 and S1-RBD. Moreover, antibody binding to ACE2 was significantly decreased in the sera of some COVID-19 patients after preadsorption of the sera with S1-RBD, which indicated that antibodies against S1-RBD can cross-react with ACE2. To confirm this possibility, two monoclonal antibodies (mAbs 127 and 150) which could bind to both S1-RBD and ACE2 were isolated from S1-RBD-immunized mice. Measurement of the binding affinities by Biacore showed these two mAbs bind to ACE2 much weaker than binding to S1-RBD. Epitope mapping using synthetic overlapping peptides and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that the amino acid residues P463, F464, E465, R466, D467 and E471 of S1-RBD are critical for the recognition by mAbs 127 and 150. In addition, Western blotting analysis showed that these mAbs could recognize ACE2 only in native but not denatured form, indicating the ACE2 epitopes recognized by these mAbs were conformation-dependent. The protein-protein interaction between ACE2 and the higher affinity mAb 127 was analyzed by HDX-MS and visualized by negative-stain transmission electron microscopy imaging combined with antigen-antibody docking. Together, our results suggest that ACE2-cross-reactive anti-S1-RBD antibodies can be induced during SARS-CoV-2 infection due to potential antigenic cross-reactivity between S1-RBD and its receptor ACE2.


Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
Vaccine ; 40(15): 2299-2310, 2022 04 01.
Article En | MEDLINE | ID: mdl-35287985

There is an urgent need for a safe and effective vaccine against dengue virus (DENV) which infects about 390 million humans per year. In the present study we combined modifications of two DENV proteins, the nonstructural protein 1 (NS1) and the envelope (E) protein, to produce a DENV vaccine candidate with enhanced features. One of these modified proteins was a C-terminal-deleted fragment of NS1 called ΔC NS1 which we have shown previously to be protective without the potentially harmful effects of cross-reactive epitopes common to surface antigens on platelets and endothelial cells. The other modified protein was an envelope protein domain III (cEDIII) containing a consensus amino acid sequence among the four serotypes of DENV, which induces neutralizing antibody against all four DENV serotypes. The cEDIII and ΔC NS1 were expressed as a fusion protein cEDIII-ΔC NS1 and its protective effects against DENV were evaluated in a mouse model. C3H/HeN mice were immunized three times with cEDIII-ΔC NS1 fusion protein mixed with alum as adjuvant. Sera collected from cEDIII-ΔC NS1-immunized mice neutralized four serotypes of DENV and also caused complement-mediated cytolysis of HMEC-1 cells infected with each of the four different DENV serotypes. Mice immunized with cEDIII-ΔC NS1 and challenged with DENV showed reduced serum virus titer, soluble NS1 and bleeding time, compared with mice infected with DENV alone. The results reveal that antibodies induced by cEDIII-ΔC NS1 not only show anti-viral efficacy by in vitro assays but also provide protective effects against DENV infection in a mouse model. The cEDIII-ΔC NS1 thus represents a novel, effective DENV vaccine candidate.


Dengue Vaccines , Dengue Virus , Dengue , Animals , Antibodies, Viral , Consensus , Dengue Vaccines/genetics , Endothelial Cells , Mice , Mice, Inbred C3H , Protein Domains , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics
10.
Microorganisms ; 8(6)2020 Jun 12.
Article En | MEDLINE | ID: mdl-32545679

Dengue virus (DENV) infection is the most prevalent mosquito-borne viral infection and can lead to severe dengue hemorrhagic fever (DHF) and even life-threatening dengue shock syndrome (DSS). Although the cytokine storm has been revealed as a critical factor in dengue disease, the limited understanding of dengue immunopathogenesis hinders the development of effective treatments. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that mediates diverse immune responses, and the serum level of MIF positively correlates with disease severity in patients with dengue. MIF is involved in DENV replication and many pathological changes, such as vascular leakage, during DENV infection. In this paper, the pathogenic roles of MIF and the regulation of MIF secretion during DENV infection are reviewed. Furthermore, whether MIF is a potential therapeutic target against DENV infection is also discussed.

11.
PLoS Pathog ; 15(4): e1007625, 2019 04.
Article En | MEDLINE | ID: mdl-31009511

Dengue virus (DENV) infection, the most common mosquito-transmitted viral infection, can cause a range of diseases from self-limiting dengue fever to life-threatening dengue hemorrhagic fever and shock syndrome. Thrombocytopenia is a major characteristic observed in both mild and severe dengue disease and is significantly correlated with the progression of dengue severity. Previous studies have shown that DENV nonstructural protein 1 (NS1), which can be secreted into patients' blood, can stimulate immune cells via Toll-like receptor 4 (TLR4) and can cause endothelial leakage. However, it is unclear whether DENV NS1 can directly induce platelet activation or cause thrombocytopenia during DENV infection. In this study, we first demonstrated that DENV but not Zika virus cell culture supernatant could induce P-selectin expression and phosphatidylserine (PS) exposure in human platelets, both of which were abolished when NS1 was depleted from the DENV supernatant. Similar results were found using recombinant NS1 from all four serotypes of DENV, and those effects were blocked in the presence of anti-NS1 F(ab')2, anti-TLR4 antibody, a TLR4 antagonist (Rhodobacter sphaeroides lipopolysaccharide, LPS-Rs) and a TLR4 signaling inhibitor (TAK242), but not polymyxin B (an LPS inhibitor). Moreover, the activation of platelets by DENV NS1 promoted subthreshold concentrations of adenosine diphosphate (ADP)-induced platelet aggregation and enhanced platelet adhesion to endothelial cells and phagocytosis by macrophages. Finally, we demonstrated that DENV-induced thrombocytopenia and hemorrhage were attenuated in TLR4 knockout and wild-type mice when NS1 was depleted from DENV supernatant. Taken together, these results suggest that the binding of DENV NS1 to TLR4 on platelets can trigger its activation, which may contribute to thrombocytopenia and hemorrhage during dengue infection.


Blood Platelets/immunology , Dengue/complications , Hemorrhage/etiology , Macrophages/immunology , Thrombocytopenia/etiology , Toll-Like Receptor 4/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Cells, Cultured , Dengue/metabolism , Dengue/virology , Dengue Virus/immunology , Hemorrhage/metabolism , Hemorrhage/pathology , Humans , Lipopolysaccharides/toxicity , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Phagocytosis , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
12.
J Infect ; 78(3): 178-186, 2019 03.
Article En | MEDLINE | ID: mdl-30653985

OBJECTIVES: Sepsis is an overwhelming systemic inflammatory response for which no satisfactory therapeutic drug is available. Previous studies have shown that autophagy is involved in the cytokine storm and vascular leakage that occur during sepsis. Therefore, we aimed to evaluate the therapeutic potential of autophagy inhibitors against bacterial infection-induced sepsis. METHODS: Cytokine production and phagocytosis of bacteria by human leukocytes and the permeability of endothelial cells were determined after the co-incubation of cells with lipopolysaccharide (LPS) or Escherichia coli in the presence or absence of autophagy inhibitors in vitro. Furthermore, the therapeutic effects of the autophagy inhibitors in E. coli-infected mice were analysed. RESULTS: In the presence of the autophagy inhibitors, the LPS-triggered cytokine secretion of human leucocytes and LPS (or LPS-conditioned medium from leucocytes)-induced endothelial hyperpermeability were significantly reduced. Moreover, the inhibition of autophagy enhanced the clearance of E. coli by leucocytes in vitro. Finally, we demonstrated that post-treatment but not pretreatment with an autophagy inhibitor (hydroxychloroquine) completely protected mice against E. coli infection-induced lethality by simultaneously reducing cytokine production and vascular leakage and enhancing bacterial clearance. CONCLUSIONS: These results suggest that autophagy plays an important role in the pathogenesis of sepsis and could serve as a potential therapeutic target for sepsis.


Autophagy , Capillary Permeability/drug effects , Cytokine Release Syndrome/drug therapy , Cytokines/antagonists & inhibitors , Endothelium, Vascular/physiopathology , Sepsis/drug therapy , Animals , Cytokines/analysis , Endothelium, Vascular/drug effects , Enzyme Inhibitors/therapeutic use , Escherichia coli/drug effects , Escherichia coli Infections/blood , Escherichia coli Infections/drug therapy , Female , Humans , Hydroxychloroquine/therapeutic use , Leukocytes/drug effects , Leukocytes/microbiology , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Sepsis/immunology
13.
PLoS Pathog ; 14(4): e1007033, 2018 04.
Article En | MEDLINE | ID: mdl-29702687

Vascular leakage is one of the salient characteristics of severe dengue. Nonstructural protein 1 (NS1) of dengue virus (DENV) can stimulate endothelial cells to secrete endothelial hyperpermeability factor, macrophage migration inhibitory factor (MIF), and the glycocalyx degradation factor heparanase 1 (HPA-1). However, it is unclear whether MIF is directly involved in NS1-induced glycocalyx degradation. In this study, we observed that among NS1, MIF and glycocalyx degradation-related molecules, the HPA-1, metalloproteinase 9 (MMP-9) and syndecan 1 (CD138) serum levels were all increased in dengue patients, and only NS1 and MIF showed a positive correlation with the CD138 level in severe patients. To further characterize and clarify the relationship between MIF and CD138, we used recombinant NS1 to stimulate human cells in vitro and challenge mice in vivo. Our tabulated results suggested that NS1 stimulation could induce human endothelial cells to secrete HPA-1 and immune cells to secrete MMP-9, resulting in endothelial glycocalyx degradation and hyperpermeability. Moreover, HPA-1, MMP-9, and CD138 secretion after NS1 stimulation was blocked by MIF inhibitors or antibodies both in vitro and in mice. Taken together, these results suggest that MIF directly engages in dengue NS1-induced glycocalyx degradation and that targeting MIF may represent a possible therapeutic approach for preventing dengue-induced vascular leakage.


Dengue Virus/isolation & purification , Endothelial Cells/virology , Glycocalyx/virology , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Capillary Permeability/physiology , Cell Line/virology , Dengue/immunology , Dengue Virus/immunology , Endothelial Cells/metabolism , Humans , Intramolecular Oxidoreductases/metabolism , Mice, Transgenic , Viral Nonstructural Proteins/metabolism
14.
Shock ; 50(1): 103-111, 2018 07.
Article En | MEDLINE | ID: mdl-28846570

Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.


Autophagy/drug effects , Macrophage Migration-Inhibitory Factors/pharmacology , Sepsis/metabolism , Animals , Capillary Permeability/drug effects , Cell Line , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Mice, Inbred BALB C , Thrombin/pharmacology
15.
Biol Open ; 4(2): 244-52, 2015 Jan 23.
Article En | MEDLINE | ID: mdl-25617421

Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF), we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA), a ROS scavenger (NAC) or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine) rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

...