Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Genome Res ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38749656

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

2.
bioRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38645134

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

3.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article En | MEDLINE | ID: mdl-38565148

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
4.
medRxiv ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38585796

Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.

5.
Ann Clin Transl Neurol ; 11(5): 1250-1266, 2024 May.
Article En | MEDLINE | ID: mdl-38544359

OBJECTIVE: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS: Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION: Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.


Exome Sequencing , Neuromuscular Diseases , Humans , Neuromuscular Diseases/genetics , Neuromuscular Diseases/diagnosis , Male , Female , Adult , Sequence Analysis, RNA/methods , Child , Adolescent , Exome/genetics , Middle Aged , Young Adult , Child, Preschool , High-Throughput Nucleotide Sequencing , Infant , Genetic Testing/methods
6.
bioRxiv ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-36747613

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftover and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

7.
Genet Med ; 26(2): 101023, 2024 Feb.
Article En | MEDLINE | ID: mdl-37947183

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Neurodevelopmental Disorders , Reinfection , Humans , Leukocytes, Mononuclear , Syndrome , Phenotype , Arrhythmias, Cardiac/genetics , Neurodevelopmental Disorders/genetics , Cell Adhesion Molecules/genetics , Extracellular Matrix Proteins/genetics
8.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38041679

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Amyotrophic Lateral Sclerosis , Hereditary Sensory and Autonomic Neuropathies , Neurodegenerative Diseases , Child , Humans , Amyotrophic Lateral Sclerosis/genetics , Sphingolipids , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Hereditary Sensory and Autonomic Neuropathies/genetics , Serine
9.
medRxiv ; 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37873196

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

10.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Article En | MEDLINE | ID: mdl-37167966

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mevalonic Acid , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Diseases/genetics , Oxidoreductases , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/adverse effects
11.
Neuropediatrics ; 53(5): 309-320, 2022 10.
Article En | MEDLINE | ID: mdl-35605965

INTRODUCTION: Arthrogryposis is characterized by the presence of multiple contractures at birth and can be caused by pathogenic variants in TTN (Titin). Exons and variants that are not expressed in one of the three major isoforms of titin are referred to as "metatranscript-only" and have been considered to be only expressed during fetal development. Recently, the metatranscript-only variant (c.39974-11T > G) in TTN with a second truncating TTN variant has been linked to arthrogryposis multiplex congenita and myopathy. METHODS: Via exome sequencing we identified the TTN c.39974-11T > G splice variant in trans with one of three truncating variants (p.Arg8922*, p.Lys32998Asnfs*63, p.Tyr10345*) in five individuals from three families. Clinical presentation and muscle ultrasound as well as MRI images were analyzed. RESULTS: All five patients presented with generalized muscular hypotonia, reduced muscle bulk, and congenital contractures most prominently affecting the upper limbs and distal joints. Muscular hypotonia persisted and contractures improved over time. One individual, the recipient twin in the setting of twin-to-twin transfusion syndrome, died from severe cardiac hypertrophy 1 day after birth. Ultrasound and MRI imaging studies revealed a recognizable pattern of muscle involvement with striking fibrofatty involvement of the hamstrings and calves, and relative sparing of the femoral adductors and anterior segment of the thighs. CONCLUSION: The recurrent TTN c.39974-11T > G variant consistently causes congenital arthrogryposis and persisting myopathy providing evidence that the metatranscript-only 213 to 217 exons impact muscle elasticity during early development and beyond. There is a recognizable pattern of muscle involvement, which is distinct from other myopathies and provides valuable clues for diagnostic work-up.


Arthrogryposis , Contracture , Muscular Diseases , Arthrogryposis/diagnostic imaging , Arthrogryposis/genetics , Connectin/genetics , Contracture/diagnostic imaging , Contracture/genetics , Humans , Infant, Newborn , Muscle Hypotonia , Mutation , Protein Isoforms
12.
Hum Mutat ; 43(6): 698-707, 2022 06.
Article En | MEDLINE | ID: mdl-35266241

Exome and genome sequencing have become the tools of choice for rare disease diagnosis, leading to large amounts of data available for analyses. To identify causal variants in these datasets, powerful filtering and decision support tools that can be efficiently used by clinicians and researchers are required. To address this need, we developed seqr - an open-source, web-based tool for family-based monogenic disease analysis that allows researchers to work collaboratively to search and annotate genomic callsets. To date, seqr is being used in several research pipelines and one clinical diagnostic lab. In our own experience through the Broad Institute Center for Mendelian Genomics, seqr has enabled analyses of over 10,000 families, supporting the diagnosis of more than 3,800 individuals with rare disease and discovery of over 300 novel disease genes. Here, we describe a framework for genomic analysis in rare disease that leverages seqr's capabilities for variant filtration, annotation, and causal variant identification, as well as support for research collaboration and data sharing. The seqr platform is available as open source software, allowing low-cost participation in rare disease research, and a community effort to support diagnosis and gene discovery in rare disease.


Genomics , Rare Diseases , Exome , Humans , Internet , Rare Diseases/diagnosis , Rare Diseases/genetics , Software
13.
HGG Adv ; 3(2): 100097, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35321494

Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I-IV and a decrease in fully assembled OXPHOS complexes I-V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.

14.
Article En | MEDLINE | ID: mdl-34728537

Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is an inherited condition leading to vision loss, affecting 1 in 3500 people. More than 270 genes are known to be implicated in the inherited retinal degenerations (IRDs), yet genetic diagnosis for ∼30% of IRD of patients remains elusive despite advances in sequencing technologies. The goal of this study was to determine the genetic causality in a family with RCD. Family members were given a full ophthalmic exam at the Retinal Service at Massachusetts Eye and Ear and consented to genetic testing. Whole-exome sequencing (WES) was performed and variants of interest were Sanger-validated. Functional assays were conducted in zebrafish along with splicing assays in relevant cell lines to determine the impact on retinal function. WES identified variants in two potential candidate genes that segregated with disease: GNL3 (G Protein Nucleolar 3) c.1187 + 3A > C and c.1568-8C > A; and PDE4DIP (Phosphodiester 4D Interacting Protein) c.3868G > A (p.Glu1290Lys) and c.4603G > A (p.Ala1535Thr). Both genes were promising candidates based on their retinal involvement (development and interactions with IRD-associated proteins); however, the functional assays did not validate either gene. Subsequent WES reanalysis with an updated bioinformatics pipeline and widened search parameters led to the detection of a 94-bp duplication in PRPF31 (pre-mRNA Processing Factor 31) c.73_266dup (p.Asp56GlyfsTer33) as the causal variant. Our study demonstrates the importance of thorough functional characterization of new disease candidate genes and the value of reanalyzing next-generation sequencing sequence data, which in our case led to identification of a hidden pathogenic variant in a known IRD gene.


Retinal Degeneration , Retinitis Pigmentosa , Animals , GTP-Binding Proteins/genetics , Humans , Mutation , Nuclear Proteins/genetics , Pedigree , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Exome Sequencing , Zebrafish/genetics
15.
Blood ; 139(21): 3159-3165, 2022 05 26.
Article En | MEDLINE | ID: mdl-34758059

Individuals with Down syndrome are at increased risk of myeloid leukemia in early childhood, which is associated with acquisition of GATA1 mutations that generate a short GATA1 isoform called GATA1s. Germline GATA1s-generating mutations result in congenital anemia in males. We report on 2 unrelated families that harbor germline GATA1s-generating mutations in which several members developed acute megakaryoblastic leukemia in early childhood. All evaluable leukemias had acquired trisomy 21 or tetrasomy 21. The leukemia characteristics overlapped with those of myeloid leukemia associated with Down syndrome, including age of onset at younger than 4 years, unique immunophenotype, complex karyotype, gene expression patterns, and drug sensitivity. These findings demonstrate that the combination of trisomy 21 and GATA1s-generating mutations results in a unique myeloid leukemia independent of whether the GATA1 mutation or trisomy 21 is the primary or secondary event and suggest that there is a unique functional cooperation between GATA1s and trisomy 21 in leukemogenesis. The family histories also indicate that germline GATA1s-generating mutations should be included among those associated with familial predisposition for myelodysplastic syndrome and leukemia.


Down Syndrome , GATA1 Transcription Factor , Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid , Child, Preschool , Down Syndrome/complications , Down Syndrome/genetics , GATA1 Transcription Factor/genetics , Germ-Line Mutation , Humans , Leukemia, Megakaryoblastic, Acute/complications , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Myeloid/complications , Male , Mutation , Phenotype , Trisomy
16.
Genet Med ; 24(2): 332-343, 2022 02.
Article En | MEDLINE | ID: mdl-34906470

PURPOSE: In Mendelian disease diagnosis, variant analysis is a repetitive, error-prone, and time consuming process. To address this, we have developed the Mendelian Analysis Toolkit (MATK), a configurable, automated variant ranking program. METHODS: MATK aggregates variant information from multiple annotation sources and uses expert-designed rules with parameterized weights to produce a ranked list of potentially causal solutions. MATK performance was measured by a comparison between MATK-aided and human-domain expert analyses of 1060 families with inherited retinal degeneration (IRD), analyzed using an IRD-specific gene panel (589 individuals) and exome sequencing (471 families). RESULTS: When comparing MATK-assisted analysis with expert curation in both the IRD-specific gene panel and exome sequencing (1060 subjects), 97.3% of potential solutions found by experts were also identified by the MATK-assisted analysis (541 solutions identified with MATK of 556 solutions found by conventional analysis). Furthermore, MATK-assisted analysis identified 114 additional potential solutions from the 504 cases unsolved by conventional analysis. CONCLUSION: MATK expedites the process of identification of likely solving variants in Mendelian traits, and reduces variability stemming from human error and researcher bias. MATK facilitates data reanalysis to keep up with the constantly improving annotation sources and next-generation sequencing processing pipelines. The software is open source and available at https://gitlab.com/matthew_maher/mendelanalysis.


Retinal Degeneration , Automation , High-Throughput Nucleotide Sequencing , Humans , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Software , Exome Sequencing
17.
Cell Genom ; 2(9): 100168, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-36778668

Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variations in human disease has not been explored at scale. Exome-sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variations across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 4,529 phenotypes using single-variant and gene tests of 394,841 individuals in the UK Biobank with exome-sequence data. We find that the discovery of genetic associations is tightly linked to frequency and is correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside the Genebass browser for rapidly exploring rare-variant association results.

18.
EMBO Mol Med ; 13(12): e13787, 2021 12 07.
Article En | MEDLINE | ID: mdl-34779586

BET1 is required, together with its SNARE complex partners GOSR2, SEC22b, and Syntaxin-5 for fusion of endoplasmic reticulum-derived vesicles with the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi. Here, we report three individuals, from two families, with severe congenital muscular dystrophy (CMD) and biallelic variants in BET1 (P1 p.(Asp68His)/p.(Ala45Valfs*2); P2 and P3 homozygous p.(Ile51Ser)). Due to aberrant splicing and frameshifting, the variants in P1 result in low BET1 protein levels and impaired ER-to-Golgi transport. Since in silico modeling suggested that p.(Ile51Ser) interferes with binding to interaction partners other than SNARE complex subunits, we set off and identified novel BET1 interaction partners with low affinity for p.(Ile51Ser) BET1 protein compared to wild-type, among them ERGIC-53. The BET1/ERGIC-53 interaction was validated by endogenous co-immunoprecipitation with both proteins colocalizing to the ERGIC compartment. Mislocalization of ERGIC-53 was observed in P1 and P2's derived fibroblasts; while in the p.(Ile51Ser) P2 fibroblasts specifically, mutant BET1 was also mislocalized along with ERGIC-53. Thus, we establish BET1 as a novel CMD/epilepsy gene and confirm the emerging role of ER/Golgi SNAREs in CMD.


Epilepsy , Muscular Dystrophies , Qc-SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Epilepsy/metabolism , Golgi Apparatus/metabolism , Humans , Protein Transport , Qb-SNARE Proteins/metabolism , SNARE Proteins/metabolism
19.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Article En | MEDLINE | ID: mdl-34059824

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Amyotrophic Lateral Sclerosis/metabolism , Sphingolipids/biosynthesis , Adolescent , Adult , Alleles , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , CRISPR-Cas Systems , Child , Female , Genes, Dominant , HEK293 Cells , Humans , Male , Middle Aged , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Young Adult
...