Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Blood ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684038

RESUMEN

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

2.
Blood ; 141(24): 2955-2960, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989492

RESUMEN

The chromatin activation landscape of chronic lymphocytic leukemia (CLL) with stereotyped B-cell receptor immunoglobulin is currently unknown. In this study, we report the results of a whole-genome chromatin profiling of histone 3 lysine 27 acetylation of 22 CLLs from major subsets, which were compared against nonstereotyped CLLs and normal B-cell subpopulations. Although subsets 1, 2, and 4 did not differ much from their nonstereotyped CLL counterparts, subset 8 displayed a remarkably distinct chromatin activation profile. In particular, we identified 209 de novo active regulatory elements in this subset, which showed similar patterns with U-CLLs undergoing Richter transformation. These regions were enriched for binding sites of 9 overexpressed transcription factors. In 78 of 209 regions, we identified 113 candidate overexpressed target genes, 11 regions being associated with more than 2 adjacent genes. These included blocks of up to 7 genes, suggesting local coupregulation within the same genome compartment. Our findings further underscore the uniqueness of subset 8 CLL, notable for the highest risk of Richter's transformation among all CLLs and provide additional clues to decipher the molecular basis of its clinical behavior.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Cromatina/genética , Linfocitos B , Receptores de Antígenos de Linfocitos B/genética
3.
PLoS One ; 18(3): e0283186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36961799

RESUMEN

MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B , Linfoma no Hodgkin , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Hodgkin/patología , Línea Celular , Centro Germinal/patología , Linfoma de Células B/genética , Linfoma no Hodgkin/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo
4.
Nat Med ; 28(8): 1662-1671, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35953718

RESUMEN

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología
5.
Redox Biol ; 54: 102353, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777200

RESUMEN

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Homeostasis , Grasa Intraabdominal/metabolismo , Ratones , Obesidad/genética , Obesidad/metabolismo , Proteómica
7.
Leukemia ; 35(11): 3152-3162, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33731848

RESUMEN

Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Ganglios Linfáticos/inmunología , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/fisiología , Animales , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/genética
8.
Nat Commun ; 12(1): 651, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510161

RESUMEN

To investigate the three-dimensional (3D) genome architecture across normal B cell differentiation and in neoplastic cells from different subtypes of chronic lymphocytic leukemia and mantle cell lymphoma patients, here we integrate in situ Hi-C and nine additional omics layers. Beyond conventional active (A) and inactive (B) compartments, we uncover a highly-dynamic intermediate compartment enriched in poised and polycomb-repressed chromatin. During B cell development, 28% of the compartments change, mostly involving a widespread chromatin activation from naive to germinal center B cells and a reversal to the naive state upon further maturation into memory B cells. B cell neoplasms are characterized by both entity and subtype-specific alterations in 3D genome organization, including large chromatin blocks spanning key disease-specific genes. This study indicates that 3D genome interactions are extensively modulated during normal B cell differentiation and that the genome of B cell neoplasias acquires a tumor-specific 3D genome architecture.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Genoma Humano/genética , Linfocitos B/citología , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología
10.
Genome Res ; 30(9): 1217-1227, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32820006

RESUMEN

Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes. Among target genes up-regulated by this process, we found members of the NOTCH, NF-kB, MTOR signaling, and TP53 signaling pathways. Other activated genes included sets involved in osteoblast differentiation and response to oxidative stress, all of which have been shown to be associated with the MM phenotype and clinical behavior. We functionally characterized MM-specific active distant enhancers controlling the expression of thioredoxin (TXN), a major regulator of cellular redox status and, in addition, identified PRDM5 as a novel essential gene for MM. Collectively, our data indicate that aberrant chromatin activation is a unifying feature underlying the malignant plasma cell phenotype.


Asunto(s)
Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , FN-kappa B/metabolismo , Osteogénesis/genética , Receptores Notch/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
11.
Blood ; 136(12): 1419-1432, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32584970

RESUMEN

Mantle cell lymphoma (MCL) is a mature B-cell neoplasm initially driven by CCND1 rearrangement with 2 molecular subtypes, conventional MCL (cMCL) and leukemic non-nodal MCL (nnMCL), that differ in their clinicobiological behavior. To identify the genetic and epigenetic alterations determining this diversity, we used whole-genome (n = 61) and exome (n = 21) sequencing (74% cMCL, 26% nnMCL) combined with transcriptome and DNA methylation profiles in the context of 5 MCL reference epigenomes. We identified that open and active chromatin at the major translocation cluster locus might facilitate the t(11;14)(q13;32), which modifies the 3-dimensional structure of the involved regions. This translocation is mainly acquired in precursor B cells mediated by recombination-activating genes in both MCL subtypes, whereas in 8% of cases the translocation occurs in mature B cells mediated by activation-induced cytidine deaminase. We identified novel recurrent MCL drivers, including CDKN1B, SAMHD1, BCOR, SYNE1, HNRNPH1, SMARCB1, and DAZAP1. Complex structural alterations emerge as a relevant early oncogenic mechanism in MCL, targeting key driver genes. Breakage-fusion-bridge cycles and translocations activated oncogenes (BMI1, MIR17HG, TERT, MYC, and MYCN), generating gene amplifications and remodeling regulatory regions. cMCL carried significant higher numbers of structural variants, copy number alterations, and driver changes than nnMCL, with exclusive alterations of ATM in cMCL, whereas TP53 and TERT alterations were slightly enriched in nnMCL. Several drivers had prognostic impact, but only TP53 and MYC aberrations added value independently of genomic complexity. An increasing genomic complexity, together with the presence of breakage-fusion-bridge cycles and high DNA methylation changes related to the proliferative cell history, defines patients with different clinical evolution.


Asunto(s)
Epigénesis Genética , Reordenamiento Génico , Linfoma de Células del Manto/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular , Ciclina D1/genética , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Inmunoglobulinas/genética , Linfoma de Células del Manto/patología , Masculino , Persona de Mediana Edad
12.
Nat Commun ; 11(1): 936, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071317

RESUMEN

LncRNAs have been shown to be direct players in chromatin regulation, but little is known about their role at active genomic loci. We investigate the role of lncRNAs in gene activation by profiling the RNA interactome of SMARCB1-containing SWI/SNF complexes in proliferating and senescent conditions. The isolation of SMARCB1-associated transcripts, together with chromatin profiling, shows prevalent association to active regions where SMARCB1 differentially binds locally transcribed RNAs. We identify SWINGN, a lncRNA interacting with SMARCB1 exclusively in proliferating conditions, exerting a pro-oncogenic role in some tumor types. SWINGN is transcribed from an enhancer and modulates the activation of GAS6 oncogene as part of a topologically organized region, as well as a larger network of pro-oncogenic genes by favoring SMARCB1 binding. Our results indicate that SWINGN influences the ability of the SWI/SNF complexes to drive epigenetic activation of specific promoters, suggesting a SWI/SNF-RNA cooperation to achieve optimal transcriptional activation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/metabolismo , Proteína SMARCB1/metabolismo , Animales , Apoptosis/genética , Carcinogénesis , Proliferación Celular/genética , Conjuntos de Datos como Asunto , Femenino , Redes Reguladoras de Genes , Células HCT116 , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Neoplasias/patología , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , RNA-Seq , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Commun ; 10(1): 3615, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399598

RESUMEN

Genome-wide association studies have provided evidence for inherited genetic predisposition to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are significantly enriched for active chromatin in CLL with evidence of being CLL-specific or differentially regulated in normal B-cell development. We then use in situ promoter capture Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci. Candidate target genes are enriched for pathways related to B-cell development such as MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable functional basis of CLL risk. By integrating genetic and epigenetic information our analysis reveals novel insights into the relationship between inherited predisposition and the regulatory chromatin landscape of CLL.


Asunto(s)
Epigénesis Genética/genética , Epigénesis Genética/fisiología , Epigenómica , Predisposición Genética a la Enfermedad/genética , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfocitos B/metabolismo , Secuencia de Bases , Cromatina/metabolismo , Metilación de ADN , Regulación Leucémica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción
15.
Nat Med ; 24(6): 868-880, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29785028

RESUMEN

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.


Asunto(s)
Cromatina/metabolismo , Epigenómica , Leucemia Linfocítica Crónica de Células B/genética , Linfocitos B/metabolismo , Secuencia de Bases , Estudios de Cohortes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...