Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 291(37): 19631-41, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27413183

RESUMEN

Calreticulin is a lectin chaperone of the endoplasmic reticulum that interacts with newly synthesized glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides as well as to the polypeptide chain. In vitro, the latter interaction potently suppresses the aggregation of various non-glycosylated proteins. Although the lectin-oligosaccharide association is well understood, the polypeptide-based interaction is more controversial because the binding site on calreticulin has not been identified, and its significance in the biogenesis of glycoproteins in cells remains unknown. In this study, we identified the polypeptide binding site responsible for the in vitro aggregation suppression function by mutating four candidate hydrophobic surface patches. Mutations in only one patch, P19K/I21E and Y22K/F84E, impaired the ability of calreticulin to suppress the thermally induced aggregation of non-glycosylated firefly luciferase. These mutants also failed to bind several hydrophobic peptides that act as substrate mimetics and compete in the luciferase aggregation suppression assay. To assess the relative contributions of the glycan-dependent and -independent interactions in living cells, we expressed lectin-deficient, polypeptide binding-deficient, and doubly deficient calreticulin constructs in calreticulin-negative cells and monitored the effects on the biogenesis of MHC class I molecules, the solubility of mutant forms of α1-antitrypsin, and interactions with newly synthesized glycoproteins. In all cases, we observed a profound impairment in calreticulin function when its lectin site was inactivated. Remarkably, inactivation of the polypeptide binding site had little impact. These findings indicate that the lectin-based mode of client interaction is the predominant contributor to the chaperone functions of calreticulin within the endoplasmic reticulum.


Asunto(s)
Calreticulina/metabolismo , Fibroblastos/metabolismo , Chaperonas Moleculares/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Calreticulina/genética , Línea Celular , Antígenos de Histocompatibilidad Clase I/biosíntesis , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Chaperonas Moleculares/genética , Mutación Missense , alfa 1-Antitripsina/biosíntesis , alfa 1-Antitripsina/genética
2.
Mol Biol Cell ; 27(5): 757-67, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26764098

RESUMEN

Prion diseases are fatal neurodegenerative disorders for which there is no effective treatment. Because the cellular prion protein (PrP(C)) is required for propagation of the infectious scrapie form of the protein, one therapeutic strategy is to reduce PrP(C) expression. Recently FK506, an inhibitor of the FKBP family of peptidyl prolyl isomerases, was shown to increase survival in animal models of prion disease, with proposed mechanisms including calcineurin inhibition, induction of autophagy, and reduced PrP(C) expression. We show that FK506 treatment results in a profound reduction in PrP(C) expression due to a defect in the translocation of PrP(C) into the endoplasmic reticulum with subsequent degradation by the proteasome. These phenotypes could be bypassed by replacing the PrP(C) signal sequence with that of prolactin or osteopontin. In mouse cells, depletion of ER luminal FKBP10 was almost as potent as FK506 in attenuating expression of PrP(C). However, this occurred at a later stage, after translocation of PrP(C) into the ER. Both FK506 treatment and FKBP10 depletion were effective in reducing PrP(Sc) propagation in cell models. These findings show the involvement of FKBP proteins at different stages of PrP(C) biogenesis and identify FKBP10 as a potential therapeutic target for the treatment of prion diseases.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas PrPC/metabolismo , Tacrolimus/farmacología , Animales , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Células Hep G2/efectos de los fármacos , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/efectos de los fármacos , Scrapie/tratamiento farmacológico , Scrapie/metabolismo , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
3.
PLoS One ; 10(12): e0145458, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26691022

RESUMEN

Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin.


Asunto(s)
Ciclofilinas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Ciclofilina C , Ciclofilinas/genética , Citomegalovirus/patogenicidad , Degradación Asociada con el Retículo Endoplásmico , Antígeno HLA-A2/metabolismo , Humanos , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masas en Tándem , Proteínas del Envoltorio Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
J Biol Chem ; 289(33): 23086-23096, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24990953

RESUMEN

Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This "hyperoxidation" phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αß, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins.


Asunto(s)
Ciclofilinas/metabolismo , Retículo Endoplásmico/enzimología , Homeostasis/fisiología , Ciclofilina C , Ciclofilinas/genética , Retículo Endoplásmico/genética , Glutatión/genética , Glutatión/metabolismo , Células Hep G2 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
5.
Semin Cell Dev Biol ; 21(5): 512-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20044014

RESUMEN

Class I molecules of the major histocompatibility complex play a vital role in cellular immunity, reporting on the presence of viral or tumor-associated antigens by binding peptide fragments of these proteins and presenting them to cytotoxic T cells at the cell surface. The folding and assembly of class I molecules is assisted by molecular chaperones and folding catalysts that comprise the general ER quality control system which also monitors the integrity of the process, disposing of misfolded class I molecules through ER associated degradation (ERAD). Interwoven with general ER quality control are class I-specific components such as the peptide transporter TAP and the tapasin-ERp57 chaperone complex that supply peptides and monitor their loading onto class I molecules. This ensures that at the cell surface class I molecules will possess mainly optimal peptides with a long half-life. In this review we discuss these processes as well as a number of strategies that viruses have evolved to subvert normal class I assembly within the ER and thereby evade immune recognition by cytotoxic T cells.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Transportadoras de Casetes de Unión a ATP , Animales , Membrana Celular/genética , Membrana Celular/inmunología , Membrana Celular/metabolismo , Semivida , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Complejo Mayor de Histocompatibilidad , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/inmunología , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo
6.
EMBO J ; 28(5): 578-90, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19165151

RESUMEN

Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2alpha, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2alpha (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.


Asunto(s)
Antineoplásicos/farmacología , Calreticulina/fisiología , Muerte Celular/inmunología , Retículo Endoplásmico/metabolismo , Antraciclinas/inmunología , Antraciclinas/farmacología , Antineoplásicos/inmunología , Apoptosis , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Exocitosis , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Compuestos Organoplatinos/inmunología , Compuestos Organoplatinos/farmacología , Oxaliplatino , Fosforilación , Proteínas SNARE/metabolismo , Rayos Ultravioleta , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA