Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(4): 247-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117250

RESUMEN

BCL-2 family members are known to be implicated in survival in numerous biological settings. Here, we provide evidence that in injury and repair processes in lungs, BCL-2 mainly acts to attenuate endoplasmic reticulum (ER) stress and limit extracellular matrix accumulation. Days after an intratracheal bleomycin challenge, mice lose a fraction of their alveolar type II epithelium from terminal ER stress driven by activation of the critical ER sensor and stress effector IRE1α. This fraction is dramatically increased by BCL-2 inhibition, because IRE1α activation is dependent on its physical association with the BCL-2-proapoptotic family member BAX, and we found BCL-2 to disrupt this association in vitro. In vivo, navitoclax (a BCL-2/BCL-xL inhibitor) given 15-21 days after bleomycin challenge evoked strong activation of IRE-1α in mesenchymal cells and markers of ER stress, but not apoptosis. Remarkably, after BCL-2 inhibition, bleomycin-exposed mice demonstrated persistent collagen accumulation at Day 42, compared with resolution in controls. Enhanced fibrosis proved to be due to the RNAase activity of IRE1α downregulating MRC2 mRNA and protein, a mediator of collagen turnover. The critical role of MRC2 was confirmed in precision-cut lung slice cultures of Day-42 lungs from bleomycin-exposed wild-type and MRC2 null mice. Soluble and tissue collagen accumulated in precision-cut lung slice cultures from navitoclax-treated, bleomycin-challenged mice compared with controls, in a manner nearly identical to that of challenged but untreated MRC2 null mice. Thus, apart from mitochondrial-based antiapoptosis, BCL-2 functions to attenuate ER stress responses, fostering tissue homeostasis and injury repair.


Asunto(s)
Compuestos de Anilina , Fibrosis Pulmonar , Sulfonamidas , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Ratones Noqueados , Colágeno/metabolismo , Bleomicina/farmacología
2.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577522

RESUMEN

Reciprocal interactions between alveolar fibroblasts and epithelial cells are crucial for lung homeostasis, injury repair, and fibrogenesis, but underlying mechanisms remain unclear. To investigate this, we administered the fibroblast-selective TGFß1 signaling inhibitor, epigallocatechin gallate (EGCG), to Interstitial Lung Disease (ILD) patients undergoing diagnostic lung biopsy and conducted single-cell RNA sequencing on spare tissue. Unexposed biopsy samples showed higher fibroblast TGFß1 signaling compared to non-disease donor or end-stage ILD tissues. In vivo, EGCG significantly downregulated TGFß1 signaling and several pro-inflammatory and stress pathways in biopsy samples. Notably, EGCG reduced fibroblast secreted Frizzle-like Receptor Protein 2 (sFRP2), an unrecognized TGFß1 fibroblast target gene induced near type II alveolar epithelial cells (AEC2s). In human AEC2-fibroblast coculture organoids, sFRP2 was essential for AEC2 trans-differentiation to basal cells. Precision cut lung slices (PCLS) from normal donors demonstrated that TGFß1 promoted KRT17 expression and AEC2 morphological change, while sFRP2 was necessary for KRT5 expression in AEC2-derived basaloid cells. Wnt-receptor Frizzled 5 (Fzd5) expression and downstream calcineurin-related signaling in AEC2s were required for sFRP2-induced KRT5 expression. These findings highlight stage-specific TGFß1 signaling in ILD, the therapeutic potential of EGCG in reducing IPF-related transcriptional changes, and identify the TGFß1-non-canonical Wnt pathway crosstalk via sFRP2 as a novel mechanism for dysfunctional epithelial signaling in Idiopathic Pulmonary Fibrosis/ILD.

3.
Nature ; 604(7904): 120-126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355013

RESUMEN

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Asunto(s)
Bronquiolos , Hurones , Células Madre Multipotentes , Alveolos Pulmonares , Animales , Bronquiolos/citología , Linaje de la Célula , Humanos , Pulmón/patología , Ratones , Células Madre Multipotentes/citología , Alveolos Pulmonares/citología , Enfermedad Pulmonar Obstructiva Crónica
4.
Nat Cell Biol ; 24(1): 10-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969962

RESUMEN

Loss of alveolar type 2 cells (AEC2s) and the ectopic appearance of basal cells in the alveoli characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into basal cells in response to fibrotic signalling in the lung mesenchyme, in vitro and in vivo. Single-cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures revealed the emergence of pathologic fibroblasts and basaloid cells previously described in IPF. Transforming growth factor-ß1 and anti-bone morphogenic protein signalling in the organoids promoted transdifferentiation. Trajectory and histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated that hAEC2s transdifferentiate into basal cells through alveolar-basal intermediates that accumulate in proximity to pathologic CTHRC1hi/TGFB1hi fibroblasts. Our study indicates that hAEC2 loss and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally connected through an hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.


Asunto(s)
Transdiferenciación Celular/fisiología , Células Epiteliales/citología , Fibrosis Pulmonar Idiopática/patología , Queratina-5/metabolismo , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología , Células Epiteliales Alveolares/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Células Cultivadas , Células Epidérmicas/citología , Fibroblastos/citología , Humanos , Mesodermo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Transducción de Señal/fisiología , Análisis de la Célula Individual , Factor de Crecimiento Transformador beta1/metabolismo
5.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596050

RESUMEN

IL-33 is a well-studied cytokine that resides normally within nuclei but can be released by cell damage or stress to then signal via a single receptor widely expressed on immune cells to promote host resistance and type 2 allergic immunity. In this issue of the JCI, Wu et al. used a well-established model of mouse Sendai viral infection to show that IL-33 was induced in distal lung airway epithelium, specifically in cell-cycling basal cells. IL-33 induced cell-cycling basal cells to expand and migrate into the alveolar compartment, presumably to restore barrier function. However, restoring barrier function with airway-derived cells may also result in persistent alveolar metaplasia. Surprisingly, nuclear IL-33 in this system acted cell autonomously, independently of release and conventional ST2 (IL1RL1) receptor signaling. The findings uncover a signaling role for nuclear IL-33 in viral activation of mouse basal cells and add to the well-known "alarmin" function of IL-33.


Asunto(s)
Hipersensibilidad , Interleucina-33 , Alarminas , Animales , Citocinas , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Pulmón , Ratones
6.
Cell Rep ; 35(3): 109009, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882319

RESUMEN

Cancer cells function as primary architects of the tumor microenvironment. However, the molecular features of cancer cells that govern stromal cell phenotypes remain unclear. Here, we show that cancer-associated fibroblast (CAF) heterogeneity is driven by lung adenocarcinoma (LUAD) cells at either end of the epithelial-to-mesenchymal transition (EMT) spectrum. LUAD cells that have high expression of the EMT-activating transcription factor ZEB1 reprogram CAFs through a ZEB1-dependent secretory program and direct CAFs to the tips of invasive projections through a ZEB1-driven CAF repulsion process. The EMT, in turn, sensitizes LUAD cells to pro-metastatic signals from CAFs. Thus, CAFs respond to contextual cues from LUAD cells to promote metastasis.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Fibroblastos Asociados al Cáncer/metabolismo , Células Epiteliales/metabolismo , Neoplasias Renales/genética , Neoplasias Pulmonares/genética , Células Madre Mesenquimatosas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/secundario , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Comunicación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Receptor con Dominio Discoidina 2/genética , Receptor con Dominio Discoidina 2/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Transducción de Señal , Microambiente Tumoral/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
7.
Thorax ; 76(7): 729-732, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33472968

RESUMEN

We recently identified epigallocatechin gallate (EGCG), a trihydroxyphenolic compound, as a dual inhibitor of lysyl oxidase-like2 and transforming growth factor-ß1 (TGFß1) receptor kinase that when given orally to patients with idiopathic pulmonary fibrosis (IPF) reversed profibrotic biomarkers in their diagnostic biopsies. Here, we extend these findings to advanced pulmonary fibrosis using cultured precision-cut lung slices from explants of patients with IPF undergoing transplantation. During these experiments, we were surprised to discover that not only did EGCG attenuate TGFß1 signalling and new collagen accumulation but also activated matrix metalloproteinase-dependent collagen I turnover, raising the possibility of slow fibrosis resolution with continued treatment.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Colágeno Tipo I/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Humanos , Fibrosis Pulmonar Idiopática/patología , Immunoblotting , Pulmón/patología , Transducción de Señal
8.
Nat Commun ; 11(1): 4520, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908154

RESUMEN

Tumor extracellular matrix has been associated with drug resistance and immune suppression. Here, proteomic and RNA profiling reveal increased collagen levels in lung tumors resistant to PD-1/PD-L1 blockade. Additionally, elevated collagen correlates with decreased total CD8+ T cells and increased exhausted CD8+ T cell subpopulations in murine and human lung tumors. Collagen-induced T cell exhaustion occurs through the receptor LAIR1, which is upregulated following CD18 interaction with collagen, and induces T cell exhaustion through SHP-1. Reduction in tumor collagen deposition through LOXL2 suppression increases T cell infiltration, diminishes exhausted T cells, and abrogates resistance to anti-PD-L1. Abrogating LAIR1 immunosuppression through LAIR2 overexpression or SHP-1 inhibition sensitizes resistant lung tumors to anti-PD-1. Clinically, increased collagen, LAIR1, and TIM-3 expression in melanoma patients treated with PD-1 blockade predict poorer survival and response. Our study identifies collagen and LAIR1 as potential markers for immunotherapy resistance and validates multiple promising therapeutic combinations.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos Inmunológicos/farmacología , Linfocitos T CD8-positivos/inmunología , Colágeno/metabolismo , Resistencia a Antineoplásicos/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Receptores Inmunológicos/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Biomarcadores de Tumor/metabolismo , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/inmunología , Matriz Extracelular/patología , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , RNA-Seq , Receptores Inmunológicos/genética
9.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678092

RESUMEN

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Queratina-8/metabolismo , Alveolos Pulmonares/fisiología , Fibrosis Pulmonar/patología , Regeneración , Células Madre/metabolismo , Células Epiteliales Alveolares/citología , Animales , Comunicación Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Queratina-8/genética , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/citología , Fibrosis Pulmonar/metabolismo , Análisis de la Célula Individual , Células Madre/citología
10.
Dev Cell ; 52(5): 546-547, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32155436

RESUMEN

How lung epithelium and endothelium co-develop to maintain structural integrity of alveoli remains unclear. In this issue of Developmental Cell, Ellis et al. define how epithelial Vegfa directs development of a distinct endothelial cell population that ultimately plays a critical role in ensuring appropriate alveolar septation during alveologenesis.


Asunto(s)
Automóviles , Factor A de Crecimiento Endotelial Vascular , Animales , Endotelio , Pulmón , Ratones , Alveolos Pulmonares
12.
Cell Stem Cell ; 26(3): 346-358.e4, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31978363

RESUMEN

Lung injury activates specialized adult epithelial progenitors to regenerate the epithelium. Depending on the extent of injury, both remaining alveolar type II cells (AEC2s) and distal airway stem/progenitors mobilize to cover denuded alveoli and restore normal barriers. The major source of airway stem/progenitors other than basal-like cells remains uncertain. Here, we define a distinct subpopulation (∼5%) of club-like lineage-negative epithelial progenitors (LNEPs) marked by high H2-K1 expression critical for alveolar repair. Quiescent H2-K1high cells account for virtually all in vitro regenerative activity of airway lineages. After bleomycin injury, H2-K1 cells expand and differentiate in vivo to alveolar lineages. However, injured H2-K1 cells eventually develop impaired self-renewal with features of senescence, limiting complete repair. Normal H2-K1high cells transplanted into injured lungs differentiate into alveolar cells and rescue lung function. These findings indicate that small subpopulations of specialized stem/progenitors are required for effective lung regeneration and are a potential therapeutic adjunct after major lung injury.


Asunto(s)
Células Epiteliales , Lesión Pulmonar , Células Epiteliales Alveolares , Diferenciación Celular , Humanos , Pulmón , Células Madre
13.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31687975

RESUMEN

Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.


Asunto(s)
Senescencia Celular , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Leucotrienos/metabolismo , Pulmón/patología , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Bleomicina/toxicidad , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibroblastos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Leucotrienos/análisis , Inhibidores de la Lipooxigenasa/farmacología , Pulmón/citología , Masculino , Ratones , Cultivo Primario de Células , Prostaglandinas/metabolismo , Transducción de Señal/efectos de los fármacos
14.
J Clin Invest ; 129(5): 2107-2122, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985294

RESUMEN

Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/citología , Proteínas de Ciclo Celular/metabolismo , Neumonía Neumocócica/patología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Transactivadores/metabolismo , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Epitelio/microbiología , Células HEK293 , Humanos , Inflamación/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Regeneración , Transducción de Señal , Células Madre/citología , Streptococcus pneumoniae , Proteínas Señalizadoras YAP
15.
PLoS One ; 14(1): e0209824, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625178

RESUMEN

Endoplasmic reticulum stress (ER stress) has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a disease of progressive fibrosis and respiratory failure. ER stress activates a signaling pathway called the unfolded protein response (UPR) that either restores homeostasis or promotes apoptosis. The bifunctional kinase/RNase IRE1α is a UPR sensor/effector that promotes apoptosis if ER stress remains high and irremediable (i.e., a "terminal" UPR). Using multiple small molecule inhibitors against IRE1α, we show that ER stress-induced apoptosis of murine alveolar epithelial cells can be mitigated in vitro. In vivo, we show that bleomycin exposure to murine lungs causes early ER stress to activate IRE1α and the terminal UPR prior to development of pulmonary fibrosis. Small-molecule IRE1α kinase-inhibiting RNase attenuators (KIRAs) that we developed were used to evaluate the contribution of IRE1α activation to bleomycin-induced pulmonary fibrosis. One such KIRA-KIRA7-provided systemically to mice at the time of bleomycin exposure decreases terminal UPR signaling and prevents lung fibrosis. Administration of KIRA7 14 days after bleomycin exposure even promoted the reversal of established fibrosis. Finally, we show that KIRA8, a nanomolar-potent, monoselective KIRA compound derived from a completely different scaffold than KIRA7, likewise promoted reversal of established fibrosis. These results demonstrate that IRE1α may be a promising target in pulmonary fibrosis and that kinase inhibitors of IRE1α may eventually be developed into efficacious anti-fibrotic drugs.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Endorribonucleasas/antagonistas & inhibidores , Fibrosis/tratamiento farmacológico , Pulmón/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosis/metabolismo , Fibrosis/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos
16.
J Clin Invest ; 128(10): 4343-4358, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29999500

RESUMEN

GWAS have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli. Single-cell RNA-sequencing showed that the hedgehog-receptive mesenchyme is composed of mostly fibroblasts with distinct proximal and distal subsets with discrete identities. Ectopic hedgehog activation in the distal fibroblasts promoted expression of proximal fibroblast markers and loss of distal alveoli and airspace enlargement of over 20% compared with controls. We found that hedgehog suppressed mesenchymal-derived mitogens enriched in distal fibroblasts that regulate alveolar stem cell regeneration and airspace size. Finally, single-cell analysis of the human lung mesenchyme showed that segregated proximal-distal identity with preferential hedgehog activation in the proximal fibroblasts was conserved between mice and humans. In conclusion, we showed that differential hedgehog activation segregates mesenchymal identities of distinct fibroblast subsets and that disruption of fibroblast identity can alter the alveolar stem cell niche, leading to emphysematous changes in the murine lung.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Alveolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Transducción de Señal , Animales , Fibroblastos/patología , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Alveolos Pulmonares/patología , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología
18.
Matrix Biol ; 73: 77-104, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29524630

RESUMEN

The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.


Asunto(s)
Matriz Extracelular/fisiología , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Fenómenos Biomecánicos , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis , Humanos , Fenotipo
19.
Artículo en Inglés | MEDLINE | ID: mdl-28432134

RESUMEN

Activation of TGF-ß1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-ß1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-ß1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.


Asunto(s)
Factor de Crecimiento Transformador beta1/fisiología , Animales , Apoptosis , Proliferación Celular , Colágeno/metabolismo , Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Fibrosis , Humanos , Integrinas/metabolismo , Integrinas/fisiología , Ratones , Modelos Biológicos , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas
20.
J Clin Invest ; 127(10): 3675-3688, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28872461

RESUMEN

TGF-ß1 signaling is a critical driver of collagen accumulation and fibrotic disease but also a vital suppressor of inflammation and epithelial cell proliferation. The nature of this multifunctional cytokine has limited the development of global TGF-ß1 signaling inhibitors as therapeutic agents. We conducted phenotypic screens for small molecules that inhibit TGF-ß1-induced epithelial-mesenchymal transition without immediate TGF-ß1 receptor (TßR) kinase inhibition. We identified trihydroxyphenolic compounds as potent blockers of TGF-ß1 responses (IC50 ~50 nM), Snail1 expression, and collagen deposition in vivo in models of pulmonary fibrosis and collagen-dependent lung cancer metastasis. Remarkably, the functional effects of trihydroxyphenolics required the presence of active lysyl oxidase-like 2 (LOXL2), thereby limiting effects to fibroblasts or cancer cells, the major LOXL2 producers. Mechanistic studies revealed that trihydroxyphenolics induce auto-oxidation of a LOXL2/3-specific lysine (K731) in a time-dependent reaction that irreversibly inhibits LOXL2 and converts the trihydrophenolic to a previously undescribed metabolite that directly inhibits TßRI kinase. Combined inhibition of LOXL2 and TßRI activities by trihydrophenolics resulted in potent blockade of pathological collagen accumulation in vivo without the toxicities associated with global inhibitors. These findings elucidate a therapeutic approach to attenuate fibrosis and the disease-promoting effects of tissue stiffness by specifically targeting TßRI kinase in LOXL2-expressing cells.


Asunto(s)
Inhibidores Enzimáticos , Transición Epitelial-Mesenquimal , Fibroblastos/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fibrosis Pulmonar , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Animales , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fibroblastos/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Fenoles/química , Fenoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...