Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Biol Lett ; 20(4): 20230518, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593853

Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.


Bees , Behavior, Animal , Light , Animals , Bees/physiology
2.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38301659

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Carcinogenesis , Carcinogens , Animals , Humans , Carcinogens/toxicity , Carcinogenicity Tests/methods , Mutagenicity Tests/methods , DNA Damage , In Vitro Techniques
3.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-37555614

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Cadmium Chloride , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , DNA Damage , Cell Cycle , Carcinogens/toxicity
4.
Mutagenesis ; 38(3): 132-138, 2023 06 20.
Article En | MEDLINE | ID: mdl-37144479

Mitochondrial DNA mutation and toxicity have been linked to several inherited and acquired diseases; however, these are challenging to diagnose and characterize due to clinical and genetic heterogeneity. This review investigates current techniques for the analysis of mitochondrial perturbations, and novel, emerging endpoints for routine application within the clinical setting. Particular focus is given to the biochemistry of the mitochondria influencing each endpoint and the relation of these to toxicity. Current approaches such as the use of metabolic markers (e.g. lactate production), and muscle biopsies to measure mitochondrial proteins were found to lack specificity. Newly emerging identified endpoints were: fibroblast growth factor-21, glucose uptake, mitochondrial membrane potential, mitochondrial morphology, mtDNA heteroplasmy, and mutation of mtDNA and nuclear DNA. Owed to the advancement in genetic analysis techniques, it is suggested by this review that genotypic endpoints of mtDNA mutation and heteroplasmy show particular promise as indicators of mitochondrial disease. It is, however, acknowledged that any single endpoint in isolation offers limited information; therefore, it is recommended that analysis of several endpoints simultaneously will offer the greatest benefit in terms of disease diagnosis and study. It is hoped that this review further highlights the need for advancement in understanding mitochondrial disease.


DNA, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Genotype
5.
Nat Commun ; 13(1): 2822, 2022 05 20.
Article En | MEDLINE | ID: mdl-35595750

Anthropogenic noise impacts are pervasive across taxa, ecosystems and the world. Here, we experimentally test the hypothesis that protecting vulnerable habitats from noise pollution can improve animal reproductive success. Using a season-long field manipulation with an established model system on the Great Barrier Reef, we demonstrate that limiting motorboat activity on reefs leads to the survival of more fish offspring compared to reefs experiencing busy motorboat traffic. A complementary laboratory experiment isolated the importance of noise and, in combination with the field study, showed that the enhanced reproductive success on protected reefs is likely due to improvements in parental care and offspring length. Our results suggest noise mitigation could have benefits that carry through to the population-level by increasing adult reproductive output and offspring growth, thus helping to protect coral reefs from human impacts and presenting a valuable opportunity for enhancing ecosystem resilience.


Anthozoa , Coral Reefs , Animals , Ecosystem , Fishes , Noise , Reproduction
6.
Nanotoxicology ; 16(1): 52-72, 2022 02.
Article En | MEDLINE | ID: mdl-35085458

Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.


Metal Nanoparticles , Nanoparticles , DNA Damage , Epithelial Cells , Gold/chemistry , Humans , Lung/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Silver/chemistry
7.
J Exp Biol ; 224(Pt 5)2021 03 02.
Article En | MEDLINE | ID: mdl-33536303

The aerial hunting behaviours of birds are strongly influenced by flight morphology and ecology, but little is known of how this relates to the behavioural algorithms guiding flight. Here, we used GPS loggers to record the attack trajectories of captive-bred gyrfalcons (Falco rusticolus) during their maiden flights against robotic aerial targets, which we compared with existing flight data from peregrine falcons (Falco peregrinus). The attack trajectories of both species were well modelled by a proportional navigation (PN) guidance law, which commands turning in proportion to the angular rate of the line-of-sight to target, at a guidance gain N However, naive gyrfalcons operate at significantly lower values of N than peregrine falcons, producing slower turning and a longer path to intercept. Gyrfalcons are less manoeuvrable than peregrine falcons, but physical constraint is insufficient to explain the lower values of N we found, which may reflect either the inexperience of the individual birds or ecological adaptation at the species level. For example, low values of N promote the tail-chasing behaviour that is typical of wild gyrfalcons and which apparently serves to tire their prey in a prolonged high-speed pursuit. Likewise, during close pursuit of typical fast evasive prey, PN will be less prone to being thrown off by erratic target manoeuvres at low guidance gain. The fact that low-gain PN successfully models the maiden attack flights of gyrfalcons suggests that this behavioural algorithm is embedded in a guidance pathway ancestral to the clade containing gyrfalcons and peregrine falcons, though perhaps with much deeper evolutionary origins.


Falconiformes , Animals
8.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Article En | MEDLINE | ID: mdl-32910239

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Carcinogenicity Tests , Carcinogens/toxicity , Endpoint Determination , Research Design , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Shape/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Humans , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Phosphorylation , Risk Assessment , Tumor Suppressor Protein p53/metabolism
9.
Mutagenesis ; 35(6): 445-452, 2020 12 31.
Article En | MEDLINE | ID: mdl-33219664

In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.


Mutagenicity Tests/methods , Mutagens/toxicity , Urethane/toxicity , Biomarkers , Cell Culture Techniques , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Respiration/drug effects , DNA Damage/drug effects , Glycolysis/drug effects , Humans , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests/methods , Mitochondria/drug effects , Mitochondria/metabolism , Spheroids, Cellular
10.
Environ Pollut ; 266(Pt 2): 115376, 2020 Nov.
Article En | MEDLINE | ID: mdl-32829125

Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigation strategies. We conducted two field experiments to investigate the effects of noise from real motorboats on the parental-care behaviours of a common coral-reef fish, the Ambon damselfish Pomacentrus amboinensis, which exhibits male-only egg care. When exposed to motorboat noise, we found that males exhibited vigilance behaviour 34% more often and spent 17% more time remaining vigilant, compared to an ambient-sound control. We then investigated nest defence in the presence of an introduced conspecific male intruder, incorporating a third noise treatment of altered motorboat-driving practice that was designed to mitigate noise exposure via speed and distance limitations. The males spent 22% less time interacting with the intruder and 154% more time sheltering during normal motorboat exposure compared to the ambient-sound control, with nest-defence levels in the mitigation treatment equivalent to those in ambient conditions. Our results reveal detrimental impacts of real motorboat noise on some aspects of parental care in fish, and successfully demonstrate the positive effects of an affordable, easily implemented mitigation strategy. We strongly advocate the integration of mitigation strategies into future experiments in this field, and the application of evidence-based policy in our increasingly noisy world.


Noise , Perciformes , Animals , Coral Reefs , Fishes , Male
11.
Toxicol In Vitro ; 67: 104905, 2020 Sep.
Article En | MEDLINE | ID: mdl-32497684

Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.


Carcinogens/administration & dosage , Dimethyl Sulfoxide/administration & dosage , Solvents/administration & dosage , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Cell Cycle/drug effects , Cell Line , DNA Damage , Dimethyl Sulfoxide/toxicity , Humans , Micronucleus Tests , Solvents/toxicity
12.
Article En | MEDLINE | ID: mdl-30173862

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Cell Culture Techniques/methods , High-Throughput Screening Assays/methods , Liver/pathology , Mutagenicity Tests/methods , Mutagens/adverse effects , Spheroids, Cellular/pathology , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Hep G2 Cells , Humans , Liver/drug effects , Micronucleus Tests
13.
Article En | MEDLINE | ID: mdl-29307375

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Cell Culture Techniques/methods , Models, Biological , Spheroids, Cellular/cytology , Tumor Cells, Cultured/cytology , Cell Survival , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A2 , Cytokinesis , Hep G2 Cells , High-Throughput Screening Assays , Humans , Mutagenicity Tests , Serum Albumin, Human/metabolism , Spheroids, Cellular/metabolism , Tumor Cells, Cultured/metabolism
14.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Article En | MEDLINE | ID: mdl-29110037

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Carcinogenicity Tests/methods , Carcinogens/toxicity , Lymphocytes/drug effects , Mutagens/toxicity , Cell Line , Humans , Micronucleus Tests , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Tumor Suppressor Protein p53/metabolism
15.
Article En | MEDLINE | ID: mdl-28622829

Hormesis is defined as a biphasic dose-response where biological effects of low doses of a stressor demonstrate the opposite effect to high-dose effects of the same stressor. Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in toxicology, resulting in a limited understanding and even some skepticism of the concept. Low dose-response studies for genotoxicity endpoints have been performed at Swansea University for over a decade. However, no statistically significant decreases below control genotoxicity levels have been detected until recently. A hormetic-style dose-response following a 24h exposure to the alkylating agent N-methyl-N-nitrosourea (MNU) was observed in a previous study for HPRT mutagenesis in the human lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-response for the induction of micronuclei by MNU in a 24h treatment in a similar test system. Following mechanistic investigations, it was hypothesized that p53 may be responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major causative factor of many cancers, consideration of hormesis in carcinogenesis could be important in safety assessment. The data examined here offer possible insights into hormesis, including its estimated prevalence, underlying mechanisms and lack of generalizability.


Hormesis , Methylnitrosourea/toxicity , Models, Theoretical , Mutagens/toxicity , Cell Line, Tumor , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Humans , Micronuclei, Chromosome-Defective/chemically induced , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/metabolism
16.
Part Fibre Toxicol ; 13(1): 50, 2016 09 09.
Article En | MEDLINE | ID: mdl-27613375

BACKGROUND: The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. METHOD: BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. RESULTS: For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 µg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 µg/mL (16 nm-SiO2) and ≥100 µg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 µg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. CONCLUSIONS: The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully.


Micronucleus Tests , Models, Biological , Nanoparticles/toxicity , Skin/drug effects , Humans , In Vitro Techniques , Microscopy, Electron, Transmission
17.
Toxicol Sci ; 144(2): 357-65, 2015 Apr.
Article En | MEDLINE | ID: mdl-25595616

Risk assessment of human exposure to chemicals is crucial for understanding whether such agents can cause cancer. The current emphasis on avoidance of animal testing has placed greater importance on in vitro tests for the identification of genotoxicants. Selection of an appropriate in vitro dosing regime is imperative in determining the genotoxic effects of test chemicals. Here, the issue of dosing approaches was addressed by comparing acute and chronic dosing, uniquely using low-dose experiments. Acute 24 h exposures were compared with equivalent dosing every 24 h over 5-day, fractionated treatment periods. The in vitro micronucleus assay was used to measure clastogenicity induced by methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU) in human lymphoblastoid cell line, TK6. Quantitative real-time (qRT) PCR was used to measure mRNA level induction of DNA repair enzymes. Lowest observed genotoxic effect levels (LOGELs) for MMS were obtained at 0.7 µg/ml for the acute study and 1.0 µg/ml for the chronic study. For acute MNU dosing, a LOGEL was observed at 0.46 µg/ml, yet genotoxicity was completely removed following the chronic study. Interestingly, acute MNU dosing demonstrated a statistically significant decrease at 0.009 µg/ml. Levels of selected DNA repair enzymes did not change significantly following doses tested. However, p53 deficiency (using the TK6-isogenic cell line, NH32) increased sensitivity to MMS during chronic dosing, causing this LOGEL to equate to the acute treatment LOGEL. In the context of the present data for 2 alkylating agents, chronic dosing could be a valuable in vitro supplement to acute dosing and could contribute to reduction of unnecessary in vivo follow-up tests.


DNA Methylation/drug effects , Tumor Suppressor Protein p53/genetics , Cell Line , DNA Damage , Dose-Response Relationship, Drug , Humans , Methyl Methanesulfonate/toxicity , Micronucleus Tests
18.
Mutagenesis ; 29(3): 155-64, 2014 May.
Article En | MEDLINE | ID: mdl-24705543

Micronucleus (MN) induction is an established cytogenetic end point for evaluating structural and numerical chromosomal alterations in genotoxicity testing. A semi-automated scoring protocol for the assessment of MN preparations from human cell lines and a 3D skin cell model has been developed and validated. Following exposure to a range of test agents, slides were stained with 4'-6-diamidino-2-phenylindole (DAPI) and scanned by use of the MicroNuc module of metafer 4, after the development of a modified classifier for selecting MN in binucleate cells. A common difficulty observed with automated systems is an artefactual output of high false positives, in the case of the metafer system this is mainly due to the loss of cytoplasmic boundaries during slide preparation. Slide quality is paramount to obtain accurate results. We show here that to avoid elevated artefactual-positive MN outputs, diffuse cell density and low-intensity nuclear staining are critical. Comparisons between visual (Giemsa stained) and automated (DAPI stained) MN frequencies and dose-response curves were highly correlated (R (2) = 0.70 for hydrogen peroxide, R (2) = 0.98 for menadione, R (2) = 0.99 for mitomycin C, R (2) = 0.89 for potassium bromate and R (2) = 0.68 for quantum dots), indicating the system is adequate to produce biologically relevant and reliable results. Metafer offers many advantages over conventional scoring including increased output and statistical power, and reduced scoring subjectivity, labour and costs. Further, the metafer system is easily adaptable for use with a range of different cells, both suspension and adherent human cell lines. Awareness of the points raised here reduces the automatic positive errors flagged and drastically reduces slide scoring time, making metafer an ideal candidate for genotoxic biomonitoring and population studies and regulatory genotoxic testing.


Micronucleus Tests/methods , Cell Culture Techniques , Cell Line , Chromosome Breakage/drug effects , Fluorescent Dyes , Humans , Indoles , Keratinocytes/drug effects , Keratinocytes/pathology , Micronuclei, Chromosome-Defective/drug effects , Micronucleus Tests/statistics & numerical data , Mutagens/toxicity
...