Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5650, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704627

RESUMEN

The zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined. Surprisingly, the Gn domain-A antibody does not directly block RVFV Gn interaction with the host receptor low density lipoprotein receptor-related protein 1 (LRP1) as determined by a competitive assay. This study identifies a rationally designed combination of human mAbs deserving of future investigation for use in humans against RVFV infection. Using a two-pronged mechanistic approach, we demonstrate the potent efficacy of a rationally designed combination mAb therapeutic.


Asunto(s)
Anticuerpos Monoclonales , Virus de la Fiebre del Valle del Rift , Animales , Ratones , Humanos , Bioensayo , Modelos Animales de Enfermedad , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad
2.
Nat Commun ; 14(1): 4507, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495594

RESUMEN

Rift Valley fever virus (RVFV) is an emerging mosquito-transmitted virus that circulates in livestock and humans in Africa and the Middle East. Outbreaks lead to high rates of miscarriages in domesticated livestock. Women are also at risk of vertical virus transmission and late-term miscarriages. MAb RVFV-268 is a highly potent recombinant neutralizing human monoclonal antibody that targets RVFV. Here we show that mAb RVFV-268 reduces viral replication in rat placenta explant cultures and prevents vertical transmission in a rat model of congenital RVF. Passive transfer of mAb RVFV-268 from mother to fetus occurs as early as 6 h after administration and persists through 24 h. Administering mAb RVFV-268 2 h prior to RVFV challenge or 24 h post-challenge protects the dams and offspring from RVFV infection. These findings support mAb RVFV-268 as a pre- and post-infection treatment to subvert RVFV infection and vertical transmission, thus protecting the mother and offspring.


Asunto(s)
Aborto Espontáneo , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Embarazo , Animales , Humanos , Ratas , Femenino , Anticuerpos Neutralizantes , Fiebre del Valle del Rift/epidemiología , Anticuerpos Antivirales , Ganado
3.
Nat Microbiol ; 8(7): 1293-1303, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322112

RESUMEN

Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn-Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn-Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.


Asunto(s)
Infecciones por Hantavirus , Virus Sin Nombre , Humanos , Virus Sin Nombre/fisiología , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Glicoproteínas
4.
Elife ; 122023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971354

RESUMEN

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.


Asunto(s)
Enfermedades Transmisibles , Virus Hantaan , Infecciones por Hantavirus , Orthohantavirus , Animales , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Hantavirus/prevención & control , Roedores
5.
J Am Chem Soc ; 144(39): 17999-18008, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130080

RESUMEN

γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family.

6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782133

RESUMEN

Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Epítopos/química , Epítopos/inmunología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Células Vero , Proteínas Virales de Fusión/química
7.
Front Immunol ; 9: 2512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420860

RESUMEN

Long non-coding RNAs (lncRNAs) possess a diverse array of regulatory functions including activation and silencing of gene transcription, regulation of splicing, and coordinating epigenetic modifications. GATA3-AS1 is a divergent lncRNA gene neighboring GATA3. GATA3 is considered the master regulator of TH2 lineage commitment enabling TH2 effector cells to efficiently transcribe genes encoding cytokines IL-4, IL-5, and IL-13. Here, we show that the GATA3-AS1 lncRNA is selectively expressed under TH2 polarizing conditions and is necessary for efficient transcription of GATA3, IL5, and IL13 genes, while being sufficient for GATA3 transcription. GATA3-AS1 is required for formation of permissive chromatin marks, H3K27 acetylation and H3K4 di/tri-methylation, at the GATA3-AS1-GATA3 locus. Further, GATA3-AS1 binds components of the MLL methyltransferase and forms a DNA-RNA hybrid (R-loop) thus tethering the MLL methyltransferase to the gene locus. Our results indicate a novel regulatory function for a divergent lncRNA and provide new insight into the function of lncRNAs in T helper cell differentiation.


Asunto(s)
Factor de Transcripción GATA3/genética , ARN Largo no Codificante/genética , Diferenciación Celular/genética , Línea Celular , Cromatina/genética , Citocinas/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Th2 , Transcripción Genética/genética
8.
J Immunol ; 199(2): 547-558, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600289

RESUMEN

We employed whole-genome RNA-sequencing to profile mRNAs and both annotated and novel long noncoding RNAs (lncRNAs) in human naive, central memory, and effector memory CD4+ T cells. Loci transcribing both lineage-specific annotated and novel lncRNA are adjacent to lineage-specific protein-coding genes in the genome. Lineage-specific novel lncRNA loci are transcribed from lineage-specific typical- and supertranscriptional enhancers and are not multiexonic, thus are more similar to enhancer RNAs. Novel enhancer-associated lncRNAs transcribed from the IFNG locus bind the transcription factor NF-κB and enhance binding of NF-κB to the IFNG genomic locus. Depletion of the annotated lncRNA, IFNG-AS1, or one IFNG enhancer-associated lncRNA abrogates IFNG expression by memory T cells, indicating these lncRNAs have biologic function.


Asunto(s)
Memoria Inmunológica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Linfocitos T/inmunología , Linaje de la Célula , Genoma Humano , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , FN-kappa B/metabolismo , ARN Mensajero/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...