Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.288
Filtrar
1.
Eur J Cancer ; 210: 114257, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151324

RESUMEN

INTRODUCTION: No definitive answers currently exist regarding optimal first-line therapy for HER2-mutant NSCLC. Access to rapid tissue sequencing is a major barrier to precision drug development in the first-line setting. ctDNA analysis has the potential to overcome these obstacles and guide treatment. METHODS: We retrospectively analyzed patients with metastatic HER2-mutant NSCLC who underwent prospective clinical ctDNA sequencing and received systemic therapy at Memorial Sloan Kettering Cancer Center (MSK) from January 2016 to September 2022. HER2 mutations were identified by next-generation sequencing through MSK-IMPACT, MSK-ACCESS or Resolution ctDx LungTM assay. Primary endpoints were time to the next treatment (TTNT) and overall survival (OS). RESULTS: Sixty-three patients were included in the primary analysis. Chemoimmunotherapy (33/63, 52.4 %) was the predominant first-line treatment with a median TTNT of 5.1 months (95 %CI 4.1 - 6.1) whereas 55.0 % (22/40) of patients who received second-line T-DXd obtained a median TTNT of 9.2 m (95 % CI, 0-22.2). Plasma ctDNA was tested before first-line therapy in 40 patients with a median OS of 28.0 months (95 % CI 21-34), in whom 31 patients (78.0 %) had detectable ctDNA. HER2 mutations were detected on ctDNA with a median turnaround time of 13 days, occasionally co-occurred with EGFR and MET alterations and were tracked longitudinally correlating with treatment response. Patients with detectable baseline ctDNA had significantly shorter OS (hazard ratio (HR), 5.25; 95 % CI, 1.2-23.9; p = 0.019). CONCLUSION: Chemoimmunotherapy remains a major treatment option for metastatic HER2-mutant NSCLC. ctDNA can rapidly detect HER2 and co-mutations, and it has the potential to guide and monitor optimal first-line therapy. As a negative prognostic biomarker, detectable ctDNA at baseline would need to be taken into account for patient selection in future studies.

2.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149247

RESUMEN

Receptor interacting protein kinases (RIPK) RIPK1 and RIPK3 play important roles in diverse innate immune pathways. Despite this, some RIPK1/3-associated proteins are absent in specific vertebrate lineages, suggesting that some RIPK1/3 functions are conserved while others are more evolutionarily labile. Here, we perform comparative evolutionary analyses of RIPK1-5 and associated proteins in vertebrates to identify lineage-specific rapid evolution of RIPK3 and RIPK1 and recurrent loss of RIPK3-associated proteins. Despite this, diverse vertebrate RIPK3 proteins are able to activate NF-κB and cell death in human cells. Additional analyses revealed a striking conservation of the RIP homotypic interaction motif (RHIM) in RIPK3, as well as other human RHIM-containing proteins. Interestingly, diversity in the RIPK3 RHIM can tune activation of NF-κB while retaining the ability to activate cell death. Altogether, these data suggest that NF-κB activation is a core, conserved function of RIPK3, and the RHIM can tailor RIPK3 function to specific needs within and between species.

3.
Microbiol Resour Announc ; : e0011024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162444

RESUMEN

This report outlines the draft genome sequences of six Klebsiella spp. strains from South Korea's agricultural produce and environments. Genome sizes ranged from 5.25 to 6.21 Mbp with 55.64% to 57.55% GC content. Each strain contained multiple plasmid sequences identified by PlasmidFinder, indicating significant antimicrobial resistance.

4.
Microbiol Spectr ; : e0058124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162489

RESUMEN

Ocular syphilis is a serious complication of Treponema pallidum infection that can occur at any stage of syphilis and affect any eye structure. It remains unknown if certain T. pallidum strains are associated with ocular infections; therefore, we performed genotyping and whole genome sequencing (WGS) to characterize strains from patients with ocular syphilis. Seventy-five ocular or non-ocular specimens from 55 ocular syphilis patients in 14 states within the United States were collected between February 2016 and November 2020. Sufficient T. pallidum DNA was available from nine patients for genotyping and three for WGS. Genotyping was done using the augmented Centers for Disease Control and Prevention typing scheme, and WGS was performed on Illumina platforms. Multilocus sequence typing allelic profiles were predicted from whole genome sequence data. T. pallidum DNA was detected in various specimens from 17 (30.9%) of the 55 patients, and typing was done on samples from 9 patients. Four complete strain types (14d10/g, 14b9/g, 14d9/g, and 14e9/f) and five partial types were identified. WGS was successful on samples from three patients and all three strains belonged to the SS14 clade of T. pallidum. Our data reveal that multiple strain types are associated with ocular manifestations of syphilis. While genotyping and WGS were challenging due to low amounts of T. pallidum DNA in specimens, we successfully performed WGS on cerebrospinal fluid, vitreous fluid, and whole blood.IMPORTANCESyphilis is caused by the spirochete Treponema pallidum. Total syphilis rates have increased significantly over the past two decades in the United States, and the disease remains a public health concern. In addition, ocular syphilis cases has also been on the rise, coinciding with the overall increase in syphilis rates. We conducted a molecular investigation utilizing traditional genotyping and whole genome sequencing over a 5-year period to ascertain if specific T. pallidum strains are associated with ocular syphilis. Genotyping and phylogenetic analysis show that multiple T. pallidum strain types are associated with ocular syphilis in the United States.

5.
Circ Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140440

RESUMEN

BACKGROUND: Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+. METHODS: HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patchclamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure. RESULTS: Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and SERCA function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria. CONCLUSIONS: We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.

6.
Biomaterials ; 312: 122750, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39126779

RESUMEN

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.

7.
Trends Cancer ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39164163

RESUMEN

Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.

8.
Food Chem Toxicol ; 192: 114909, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128689

RESUMEN

Cannabidiol (CBD) has gained widespread popularity; however, its pharmacological and toxicological profiles in the context of human genetic diversity remain largely unexplored. Here, we investigated the variability in metabolism and toxicity of CBD-rich cannabis extract (CRCE) in genetically diverse mouse models: C57BL/6J, B6C3F1/J, and NZO/HlLtJ strains. Mice received a single dose of CRCE containing 57.9% CBD at dosages of 0, 246, 738, and 2460 mg/kg of CBD. At 24 h after treatment, no appreciable histomorphological changes were detected in the liver. Plasma bilirubin levels increased markedly in all strains at the highest CBD dose. Mice in all treatment groups displayed significant but distinct increases in ALT and AST levels. While B6C3F1/J and NZO/HlLtJ mice had negligible plasma CBD levels at 738 mg/kg, C57BL/6J mice exhibited levels exceeding 7000 ng/mL. At 2460 mg/kg, high CBD concentrations were found in B6C3F1/J and C57BL/6J mice, but markedly lower levels were seen in NZO/HlLtJ mice. Gene expression profiling showed significant increases in Cyp2b10 across all strains but varying responses in Cyp1a1 expression, indicating strain-specific CYP dysregulation. Genetically diverse mice exhibited differential pharmacological and toxicological responses to CRCE, suggesting a high potential for inter-individual variability in the pharmacology and toxicology of CBD in humans.

9.
J Fish Dis ; : e14005, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128013

RESUMEN

Ictalurid herpesvirus 1 (IcHV1) is the most significant viral agent in U.S. catfish aquaculture. Little is known regarding the genetic stability and antigenic variability of IcHV1. Herein, the genetic and antigenic diversity of IcHV1 field isolates was assessed by restriction fragment length polymorphism (RFLP) analysis and serum neutralization assays. RFLP analysis identified two distinct genotypes (IcHV1A and IcHV1B), both discrete from blue catfish alloherpesvirus (BCAHV). Neutralization assays with anti-IcHV1 monoclonal antibody Mab-95 indicate shared antigenic determinants for IcHV1A and IcHV1B that are absent from BCAHV, which Mab-95 did not neutralize. Virulence assessments with representative isolates demonstrate significant differences between isolates within RFLP groups and pooled RFLP group data suggest IcHV1B (pooled survival [mean ± SE]: 58.3% ± 2.6) may be more virulent than IcHV1A (survival: 68.6% ± 2.4). Rechallenges with representative IcHV1A and IcHV1B isolates indicate a cross-protective effect, with fish surviving initial exposure to IcHV1A or IcHV1B showing robust protection when subsequently re-exposed to IcHV1A or IcHV1B. This work demonstrated significant differences in virulence between case isolates, identifying two discrete IcHV1 lineages, distinct from BCAHV, with similar virulence in channel and channel × blue catfish hybrids and a cross-protective effect in catfish surviving exposure to either lineage.

10.
Microbiol Spectr ; : e0059224, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101714

RESUMEN

Escherichia coli is a commensal inhabitant of the mammalian gut microbiota, frequently associated with various gastrointestinal diseases. There is increasing interest in comprehending the variety of bacteriophages (phages) that target this bacterium, as such insights could pave the way for their potential use in therapeutic applications. Here, we report the isolation and characterization of four newly identified E. coli infecting tailed phages (W70, A7-1, A5-4, and A73) that were found to constitute a novel genus, Septuagintavirus, within the subfamily Vequintavirinae. Genomes of these phages ranged from 137 kbp to 145 kbp, with a GC content of 41 mol%. They possess a maximum nucleotide similarity of 30% with phages of the closest phylogenetic genus, Certrevirus, while displaying limited homology to other genera of the Vequintavirinae family. Host range analysis showed that these phages have limited activity against a panel of E. coli strains, infecting 6 out of 16 tested isolates, regardless of their phylotype. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was performed on the virion of phage W70, allowing the identification of 28 structural proteins, 19 of which were shared with phages of other genera of Vequintavirinae family. The greatest diversity was identified with proteins forming tail fiber structures, likely indicating the adaptation of virions of each phage genus of this subfamily for the recognition of their target receptor on host cells. The findings of this study provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the pool of knowledge currently known about these phages. IMPORTANCE: Escherichia coli is a well-known bacterium that inhabits diverse ecological niches, including the mammalian gut microbiota. Certain strains are associated with gastrointestinal diseases, and there is a growing interest in using bacteriophages, viruses that infect bacteria, to combat bacterial infections. Here, we describe the isolation and characterization of four novel E. coli bacteriophages that constitute a new genus, Septuagintavirus, within the subfamily Vequintavirinae. We conducted mass spectrometry on virions of a representative phage of this novel clade and compared it to other phages within the subfamily. Our analysis shows that virion structure is highly conserved among all phages, except for proteins related to tail fiber structures implicated in the host range. These findings provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the existing pool of knowledge about these phages.

11.
Microb Pathog ; 194: 106843, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117015

RESUMEN

Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.

12.
Sex Transm Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115210

RESUMEN

BACKGROUND: Chlamydia and gonorrhea are two of the most common sexually transmitted infections (STIs) worldwide, presenting major public health challenges and resulting in billions of dollars in direct medical costs in the U.S. Incarcerated females have a particularly elevated risk of these infections, which can result in serious sequelae if left untreated. On December 13, 2021, the Los Angeles County Jail system began offering opt-out urogenital chlamydia and gonorrhea screening to all newly incarcerated females. METHODS: We retrospectively analyzed electronic health record data for completed urogenital chlamydia/gonorrhea screening among newly incarcerated females between December 13, 2021, and May 31, 2023. We used multivariable logistic regression to examine the association of STIs and treatment non-initiation outcomes with various demographic and self-reported variables. RESULTS: Of the 13,739 female entrants offered STI testing, 10,717 (78%) completed screening, with 1151 (11%) having a chlamydial infection, 788 (7%) having a gonococcal infection, and 1626 (15%) having >1 infection. STI positivity was associated with age 18-34, reported houselessness, amphetamine use, and history of a positive prior treponemal antibody test. STI treatment non-initiation was associated with shorter jail stay for both chlamydial ([aOR] = 87.4, 95% CI (34.2, 223.2)) and gonococcal ([aOR] = 9.0, 95% CI (5.2, 15.7)) infections. CONCLUSION: The STI prevalence among female detainees tested was manyfold higher than that of the general population. The implementation of routine opt-out STI screening in carceral settings provides a unique opportunity to benefit the health of both the correctional population and potentially that of the surrounding community.

14.
Curr Microbiol ; 81(9): 299, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110223

RESUMEN

Four Gram-negative, facultative anaerobic, oxidase-negative and catalase-positive strains were isolated from lettuce sample collected from test beds at the National Institute of Agricultural Sciences in Wanju, South Korea. The whole genome sequences of the strains ranged from 4,624,629 to 4,849,846 bp in size, with DNA G + C contents of 54.32 to 54.56 mol%. Phylogenetic analyses based on 16S rRNA gene and four housekeeping (atpD, gyrB, infB, and rpoB) gene sequences showed that the four strains clustered closely together with Scandinavium type strains within the Enterobacteriaceae family. Moreover, the average nucleotide identity and digital DNA-DNA hybridization value of the proposed type strain (V105_6T) with the closely related Scandinavium type strains were in the range of 85.71-86.16% and 30.2-31.2%, respectively, which were all below the species delineation threshold values. The major cellular fatty acid of V105_6T was C16:0. Growth was observed at 7, 10 and 35 °C, and in the presence of 7% NaCl concentration. Based on phenotypic and genotypic results, strain V105_6T represents a novel species of the genus Scandinavium, for which the name Scandinavium lactucae sp. nov. is proposed. The type strain is V105_6T (= LMG 33389T = DSM 117134T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Lactuca , Filogenia , ARN Ribosómico 16S , República de Corea , Lactuca/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/clasificación , Hibridación de Ácido Nucleico , Genoma Bacteriano , Análisis de Secuencia de ADN
15.
Nat Nanotechnol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174835

RESUMEN

One of the most promising approaches towards large-scale quantum computation uses devices based on many Josephson junctions. Yet, even today, open questions regarding the single junction remain unsolved, such as the detailed understanding of the quantum phase transitions, the coupling of the Josephson junction to the environment or how to improve the coherence of a superconducting qubit. Here we design and build an engineered on-chip reservoir connected to a Josephson junction that acts as an efficient bolometer for detecting the Josephson radiation under non-equilibrium, that is, biased conditions. The bolometer converts the a.c. Josephson current at microwave frequencies up to about 100 GHz into a temperature rise measured by d.c. thermometry. A circuit model based on realistic parameter values captures both the current-voltage characteristics and the measured power quantitatively. The present experiment demonstrates an efficient, wide-band, thermal detection scheme of microwave photons and provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements.

16.
Drug Chem Toxicol ; : 1-8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155655

RESUMEN

Cannabidiol (CBD) is a major phytocannabinoid from Cannabis sativa. It is currently widely available and widely used in the USA, but despite its rapid progress to market, the pharmacology and toxicology of both CBD and cannabidiol-rich cannabis extracts (CRCE) remain largely unknown. The goals of this study were to investigate the potential of a novel human microphysiological system to emulate CRCE-induced hepatotoxicity and pharmacological properties demonstrated in animal models. For this purpose, C57BL6/J male mice were subjected to dosing with either 0, 61.5, 184.5, or 615 mg/kg of CRCE for 10 days. The liver-on-chip system, incorporating human primary hepatocytes, sinusoidal endothelial cells, as well as Kupffer and stellate cells was subjected to 0, 300, 1,200, or 4,400 ng/mL of CRCE (8 h exposure followed by 16 h washout) for 5 days. Administration of CRCE in mice resulted in nearly 4-fold elevations of plasma ALT at 615 mg/kg (p < 0.01) and a dose-dependent decrease in intrahepatic miR-122. Elevated levels of ALT, paralleled by decreased intrahepatic and increased effluent levels of miR-122, were also observed in the liver-on-chip, although these results were not statistically significant. Exposure to CRCE resulted in a robust and dose-dependent induction of key cytochrome P450 enzymes, namely Cyp1a2, Cyp2b6 (CYP2B10), Cyp2e1, and Cyp2c9 (CYP2C19) in both mouse livers and liver-on-chip. The results of this study demonstrate the congruence between the responses observed in mouse and human liver-on-chip experimental systems and provide evidence of the potential microphysiological systems hold for translating animal data into clinical practice.

17.
Int J Parasitol Drugs Drug Resist ; 26: 100557, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163740

RESUMEN

Kinetoplastid organisms, including Trypanosoma brucei, are a significant health burden in many tropical and semitropical countries. Much of their metabolism is poorly understood. To better study kinetoplastid metabolism, chemical probes that inhibit kinetoplastid enzymes are needed. To discover chemical probes, we have developed a high-throughput flow cytometry screening assay that simultaneously measures multiple glycolysis-relevant metabolites in live T. brucei bloodstream form parasites. We transfected parasites with biosensors that measure glucose, ATP, or glycosomal pH. The glucose and ATP sensors were FRET biosensors, while the pH sensor was a GFP-based biosensor. The pH sensor exhibited a different fluorescent profile from the FRET sensors, allowing us to simultaneously measure pH and either glucose or ATP. Cell viability was measured in tandem with the biosensors using thiazole red. We pooled sensor cell lines, loaded them onto plates containing a compound library, and then analyzed them by flow cytometry. The library was analyzed twice, once with the pooled pH and glucose sensor cell lines and once with the pH and ATP sensor cell lines. Multiplexing sensors provided some internal validation of active compounds and gave potential clues for each compound's target(s). We demonstrated this using the glycolytic inhibitor 2-deoxyglucose and the alternative oxidase inhibitor salicylhydroxamic acid. Individual biosensor-based assays exhibited a Z'-factor value acceptable for high-throughput screening, including when multiplexed. We tested assay performance in a pilot screen of 14,976 compounds from the Life Chemicals Compound Library. We obtained hit rates from 0.2 to 0.4% depending on the biosensor, with many compounds impacting multiple sensors. We rescreened 44 hits, and 28 (64%) showed repeatable activity for one or more sensors. One compound exhibited EC50 values in the low micromolar range against two sensors. We expect this method will enable the discovery of glycolytic chemical probes to improve metabolic studies in kinetoplastid parasites.

18.
Case Rep Dent ; 2024: 6635130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148559

RESUMEN

The authors present a case concerning an adult male patient who developed multiple sites of root caries adjacent to the area where he habitually held a sugar-free nicotine lozenge that contained mannitol and maltodextrin. The root caries occurred despite the patient's excellent oral hygiene, exemplary dietary habits, and clinically normal salivary flow. Between 1999 and 2008, he had only required two restorations to repair carious lesions. This patient had a 20+-year habit of using smokeless tobacco before switching to a cessation aid nicotine lozenge in May of 2008. A full-mouth series of radiographs taken in November 2009 revealed carious lesions on virtually every posterior tooth. The nicotine lozenge's principal ingredients were mannitol (75.7%) and maltodextrin. According to the United States' current Food and Drug Administration (FDA) guidelines, manufacturers can advertise these lozenges as sugar-free. Thus, it is assumed by the public that these types of products are incapable of "causing a cavity." However, this case report presents evidence suggesting that frequent use of sugar-free nicotine lozenges may be associated with dental caries.

19.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149392

RESUMEN

Retrons are a retroelement class found in diverse prokaryotes that can be adapted to augment CRISPR-Cas9 genome engineering technology to efficiently rewrite short stretches of genetic information in bacteria and yeast; however, efficiency in human cells has been limited by unknown factors. We identified non-coding RNA (ncRNA) instability and impaired Cas9 activity as major contributors to poor retron editor efficiency. We re-engineered the Eco1 ncRNA to incorporate an exoribonuclease-resistant RNA pseudoknot from the Zika virus 3' UTR and devised an RNA processing strategy using Csy4 ribonuclease to liberate the sgRNA and ncRNA. These modifications yielded a ncRNA with 5'- and 3'-end protection and an sgRNA with minimal 5' extension. This strategy increased steady-state ncRNA levels and rescued Cas9 activity leading to enhanced efficiency of the Eco1 retron editor in human cells. The enhanced Eco1 retron editor enabled the insertion of missense mutations in human cells from a single integrated lentivirus, thereby ensuring genotype-phenotype linkage over multiple cell divisions. This work reveals a previously unappreciated role for ncRNA stability in retron editor efficiency in human cells. Here we present an enhanced Eco1 retron editor that enables efficient introduction of missense mutations in human cells from a single heritable genome copy.

20.
Front Bioeng Biotechnol ; 12: 1404327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988864

RESUMEN

Obesity is a significant public health concern that is closely associated with various comorbidities such as heart disease, stroke, type II diabetes (T2D), and certain cancers. Due to the central role of adipose tissue in many disease etiologies and the pervasive nature in the body, engineered adipose tissue models are essential for drug discovery and studying disease progression. This study validates a fat-on-a-chip (FOAC) model derived from primary mature adipocytes. Our FOAC model uses a Micronit perfusion device and introduces a novel approach for collecting continuous data by using two non-invasive readout techniques, resazurin and glucose uptake. The Micronit platform proved to be a reproducible model that can effectively maintain adipocyte viability, metabolic activity, and basic functionality, and is capable of mimicking physiologically relevant responses such as adipocyte hypertrophy and insulin-mediated glucose uptake. Importantly, we demonstrate that adipocyte size is highly dependent on extracellular matrix properties, as adipocytes derived from different patients with variable starting lipid areas equilibrate to the same size in the hyaluronic acid hydrogel. This model can be used to study T2D and monitor adipocyte responses to insulin for longitudinally tracking therapeutic efficacy of novel drugs or drug combinations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA