Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39244492

RESUMEN

Detransition, the process of reverting to one's gender assigned at birth after a period of transition, or moving away from the original transition goal, presents unique challenges in healthcare. This paper introduces the clinical issue and provides a comprehensive overview of the ethical, psychological, legal, surgical, and endocrinological considerations involved in supporting individuals who choose to detransition. It emphasises the importance of patient-centred care, informed consent, and the need for expanded research to address the specific needs of this population. The paper highlights the complexities of endocrine management, surgical reversals, and the necessity for comprehensive support systems. Key psychotherapeutic interventions, including trauma-focused Cognitive Behavioural Therapy (CBT), Eye Movement Desensitization and Reprocessing (EMDR), and third-wave approaches like Compassion-Focused Therapy (CFT), are recommended to manage associated trauma and shame. By adopting a holistic approach, healthcare providers can better assist individuals navigating the complexities of detransition.

2.
Mater Today Bio ; 25: 100963, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38312802

RESUMEN

Wounds are responsible for the decrease in quality of life of billions of people around the world. Their assessment relies on subjective parameters which often delays optimal treatments and results in increased healthcare costs. In this work, we sought to understand and quantify how wounds at different healing stages (days 1, 3, 7 and 14 post wounding) change the mechanical properties of the tissues that contain them, and how these could be measured at clinically relevant strain levels, as a step towards quantitative wound tracking technologies. To achieve this, we used digital image correlation and mechanical testing on a mouse model of wound healing to map the global and local tissue strains. We found no significant differences in the elastic and viscoelastic properties of wounded vs unwounded skin when samples were measured in bulk, presumably as these were masked by the protective mechanisms of skin, which redistributes the applied loads to mitigate high stresses and reduce tissue damage. By measuring local strain values and observing the distinct patterns they formed, it was possible to establish a connection between the healing phase of the tissue (determined by the time post-injury and the observed histological features) and the overall mechanical behaviour. Importantly, these parameters were measured from the surface of the tissue, using physiologically relevant strains without increasing the tissue's damage. Adaptations of these approaches for clinical use have the potential to aid in the identification of skin healing problems, such as excessive inflammation or lack of mechanical progression over time. An increase, decrease, or lack of change in the elasticity and viscoelasticity parameters, can be indicative of wound state, thus ultimately leading to improved diagnostic outcomes.

3.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764291

RESUMEN

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Asunto(s)
Transducción de Señal , Piel , Humanos , Piel/metabolismo
4.
ACS Appl Mater Interfaces ; 13(32): 37997-38006, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34355561

RESUMEN

It is well known that extracellular matrix stiffness can affect cell fate and change dynamically during many biological processes. Existing experimental means for in situ matrix stiffness modulation often alters its structure, which could induce additional undesirable effects on cells. Inspired by the phenomenon of depth sensing by cells, we introduce here core-shell microfibers with a thin collagen core for cell growth and an alginate shell that can be dynamically stiffened to deliver mechanical stimuli. This allows for the maintenance of biochemical properties and structure of the surrounding microenvironment, while dynamically modulating the effective modulus "felt" by cells. We show that simple addition of Sr2+ in media can easily increase the stiffness of initially Ca2+ cross-linked alginate shells. Thus, despite the low stiffness of collagen cores (<5 kPa), the effective modulus of the matrix "felt" by cells are substantially higher, which promotes osteogenesis differentiation of human mesenchymal stem cells. We show this effect is more prominent in the stiffening microfiber compared to a static microfiber control. This approach provides a versatile platform to independently and dynamically modulate cellular microenvironments with desirable biochemical, physical, and mechanical stimuli without an unintended interplay of effects, facilitating investigations of a wide range of dynamic cellular processes.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis , Animales , Animales Recién Nacidos , Bovinos , Línea Celular , Matriz Extracelular/metabolismo , Humanos
5.
Nat Commun ; 9(1): 5069, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498210

RESUMEN

Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein (RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of mutp53's invasive/migratory gain-of-function by increasing RCP-dependent integrin recycling in other tumour cells. This process depends on mutp53's ability to control production of the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podocalyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-invasive extracellular matrix (ECM), and quantitative second harmonic generation microscopy indicates that this ECM displays a characteristic orthogonal morphology. The lung ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence the microenvironment in distant organs in a way that can support invasive growth.


Asunto(s)
Exosomas/metabolismo , Sialoglicoproteínas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Exosomas/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Microscopía de Fuerza Atómica , Mutación/genética , Sialoglicoproteínas/genética , Sialomucinas/genética , Sialomucinas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA