Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hum Evol ; 193: 103548, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896896

RESUMEN

We report a new Paleogene primate community discovered in the uppermost part of the Samlat Formation outcropping on the continental shore of the Rio de Oro, east of the Dakhla peninsula (in the south of Morocco, near the northern border of Mauritania). Fossils consist of isolated teeth, which were extracted by wet screening of estuarine sediments (DAK C2) dating from the earliest Oligocene (ca. 33.5 Ma). These dental remains testify to the presence of at least eight primate species, documenting distinct families, four of which are among the Anthropoidea (Oligopithecidae [Catopithecus aff. browni], Propliopithecidae [?Propliopithecus sp.], Parapithecidae [Abuqatrania cf. basiodontos], and Afrotarsiidae [Afrotarsius sp.]) and four in the Strepsirrhini (a Djebelemuridae [cf. 'Anchomomys' milleri], a Galagidae [Wadilemur cf. elegans], a possible lorisiform [Orogalago saintexuperyi gen. et sp. nov.], and a strepsirrhine of indeterminate affinities [Orolemur mermozi gen. et sp. nov.]). This record of various primates at Dakhla represents the first Oligocene primate community from Northwest Africa, especially from the Atlantic margin of that landmass. Considering primates plus rodents (especially hystricognaths), the taxonomic proximity at the generic (even specific) level between DAK C2 (Dakhla) and the famous Egyptian fossil-bearing localities of the Jebel Qatrani Formation (Fayum Depression), either dating from the latest Eocene (L-41) or from the early Oligocene, suggests the existence of an east-west 'trans-North African' environmental continuum during the latest Eocene-earliest Oligocene time interval. The particularly diverse mammal fauna from DAK C2, recorded within the time window of global climate deterioration characterizing the Eocene/Oligocene transition, suggests that this tropical region of northwest Africa was seemingly less affected, if at all, by the cooling and associated paleoenvironmental and biotic changes documented at that time or at least that the effects were delayed. The expected densely forested paleoenvironment bordering the western margin of North Africa at the beginning of the early Oligocene probably offered better tropical refugia than higher latitudes or more inland areas during the cooling episode.

2.
Proc Biol Sci ; 288(1960): 20211439, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34641726

RESUMEN

Africa has played a pivotal role in the evolution of early proboscideans (elephants and their extinct relatives), yet vast temporal and geographical zones remain uncharted on the continent. A long hiatus encompassing most of the Eocene (Ypresian to the Early Priabonian, around 13 Myr timespan) considerably hampers our understanding of the early evolutionary history of the group. It is notably the case with the origin of its most successful members, the Elephantiformes, i.e. all elephant-like proboscideans most closely related to modern elephants. Here, we describe a proboscidean lower molar discovered in Lutetian phosphate deposits from Togo, and name a new genus and species, Dagbatitherium tassyi. We show that Dagbatitherium displays several elephantiform dental characteristics such as a three-layered Schmelzmuster, the presence of a mesoconid, transversely enlarged buccal cusps and the individualization of a third lophid closely appressed to a minute distal cingulid. Dagbatitherium represents a stem Elephantiformes, pushing back the origin of the group by about 10 Myr, i.e. a third of its currently known evolutionary history. More importantly, Dagbatitherium potentially unlocks the puzzle of the origin of the unique elephantiform tooth crown organization by bridging a critical temporal and morphological gap between early bunodont incipiently bilophodont proboscidean taxa and more derived elephantiforms.


Asunto(s)
Fósiles , Diente , Evolución Biológica , Filogenia , Togo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...