Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Planet Health ; 8(5): e309-e317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38729670

RESUMEN

BACKGROUND: Increasing awareness of the environmental and public health impacts of expanding and intensifying animal-based food and farming systems creates discord, with the reliance of much of the world's population on animals for livelihoods and essential nutrition. Increasing the efficiency of food production through improved animal health has been identified as a step towards minimising these negative effects without compromising global food security. The Global Burden of Animal Diseases (GBADs) programme aims to provide data and analytical methods to support positive change in animal health across all livestock and aquaculture animal populations. METHODS: In this study, we present a metric that begins the process of disease burden estimation by converting the physical consequences of disease on animal performance to farm-level costs of disease, and calculates a metric termed the Animal Health Loss Envelope (AHLE) via comparison between the status quo and a disease-free ideal. An example calculation of the AHLE metric for meat production from broiler chickens is provided. FINDINGS: The AHLE presents the direct financial costs of disease at farm-level for all causes by estimating losses and expenditure in a given farming system. The general specification of the model measures productivity change at farm-level and provides an upper bound on productivity change in the absence of disease. On its own, it gives an indication of the scale of total disease cost at farm-level. INTERPRETATION: The AHLE is an essential stepping stone within the GBADs programme because it connects the physical performance of animals in farming systems under different environmental and management conditions and different health states to farm economics. Moving forward, AHLE results will be an important step in calculating the wider monetary consequences of changes in animal health as part of the GBADs programme. FUNDING: Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth and Development Office, EU Horizon 2020 Research and Innovation Programme.


Asunto(s)
Enfermedades de los Animales , Crianza de Animales Domésticos , Ganado , Animales , Enfermedades de los Animales/economía , Enfermedades de los Animales/epidemiología , Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/métodos , Costo de Enfermedad , Pollos , Carga Global de Enfermedades , Salud Global
2.
J Dairy Sci ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788837

RESUMEN

An economic simulation was carried out over 183 milk-producing countries to estimate the global economic impacts of 12 dairy cattle diseases and health conditions: mastitis (subclinical and clinical), lameness, paratuberculosis (Johne's disease), displaced abomasum, dystocia, metritis, milk fever, ovarian cysts, retained placenta, and ketosis (subclinical and clinical). Estimates of disease impacts on milk yield, fertility, and culling were collected from the literature, standardized, meta-analyzed using a variety of methods ranging from simple averaging to random-effects models, and adjusted for comorbidities to prevent overestimation. These comorbidity-adjusted disease impacts were then combined with a set of country-level lactational incidence and/or prevalence estimates, herd characteristics, and price estimates within a series of Monte Carlo simulations that estimated and valued the economic losses due to these diseases. It was estimated that total annual global losses are USD 65 billion (B). Subclinical ketosis, clinical mastitis, and subclinical mastitis were the costliest diseases modeled, resulting in mean annual global losses of approximately USD 18B, USD 13B, and USD 9B, respectively. Estimated global annual losses due to clinical ketosis, displaced abomasum, dystocia, lameness, metritis, milk fever, ovarian cysts, paratuberculosis, and retained placenta were estimated to be USD 0.2B, 0.6B, 0.6B, 6B, 5B, 0.6B, 4B, 4B, and 3B, respectively. Without adjustment for comorbidities, when statistical associations between diseases were disregarded, mean aggregate global losses would have been overestimated by 45%. Although annual losses were greatest in India (USD 12B), the USA (USD 8B), and China (USD 5B), depending on the measure of losses used (losses as a percent of GDP, losses per capita, losses as a percent of gross milk revenue), the relative economic burden of these dairy cattle diseases across countries varied markedly.

3.
Res Vet Sci ; 168: 105102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215653

RESUMEN

The heterogeneity that exists across the global spectrum of livestock production means that livestock productivity, efficiency, health expenditure and health outcomes vary across production systems. To ensure that burden of disease estimates are specific to the represented livestock population and people reliant upon them, livestock populations need to be systematically classified into different types of production system, reflective of the heterogeneity across production systems. This paper explores the data currently available of livestock production system classifications and animal health through a scoping review as a foundation for the development of a framework that facilitates more specific estimates of livestock disease burdens. A top-down framework to classification is outlined based on a systematic review of existing classification methods and provides a basis for simple grouping of livestock at global scale. The proposed top-down classification framework, which is dominated by commodity focus of production along with intensity of resource use, may have less relevance at the sub-national level in some jurisdictions and will need to be informed and adapted with information on how countries themselves categorize livestock and their production systems. The findings in this study provide a foundation for analysing animal health burdens across a broad level of production systems. The developed framework will fill a major gap in how livestock production and health are currently approached and analysed.


Asunto(s)
Enfermedades de los Animales , Ganado , Animales , Enfermedades de los Animales/epidemiología , Costo de Enfermedad
4.
Prev Vet Med ; 221: 106077, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976968

RESUMEN

The Global Burden of Animal Diseases programme is currently working to estimate the burden of animal health loss in Ethiopia. As part of this work, structured expert elicitation has been trialled to attribute the proportion of animal health losses due to three independent and exhaustive high-level causes (infectious, non-infectious, and external). Separate in-person workshops were conducted with eight cattle, nine small ruminant, and eight chicken experts. Following the Investigate-Discuss-Estimate-Aggregate protocol for structured expert elicitation, estimates were obtained for the proportion of animal health loss due to high-level causes in different combinations of health loss, species, age-sex class, and production system. Three-point questions were used to inform beta-pert distributions and capture uncertainty in estimates. Individual expert estimates were aggregated by quantile mean to produce average distributions. Random samples from these average distributions estimated that infectious causes inflict the highest proportion of health loss in Ethiopia, with at least 40 % of health losses estimated to be due to infectious causes in all categories. This study provides a rapid, simple, and engaging method to attribute the burden of animal health loss at a high-level. Results are informative, however will become increasingly useful once they can be compared with results from more sophisticated, data-driven models.


Asunto(s)
Enfermedades de los Animales , Enfermedades de los Bovinos , Humanos , Bovinos , Animales , Incertidumbre , Etiopía/epidemiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/etiología
5.
Front Vet Sci ; 10: 1233474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885617

RESUMEN

This paper addresses knowledge gaps in the biomass, productivity and value of livestock for the pastoral, mixed crop-livestock and specialized dairy systems in Ethiopia. Population size, reproductive performance, mortality, offtake and productivity of cattle were calculated from official statistics and a meta-analysis of data available in the published literature. This information was then used to estimate biomass and output value for 2020 using a herd dynamics model. The mixed-crop livestock system dominates the Ethiopian cattle sector, with 55 million cattle (78% total population) and contributing 8.52 billion USD to the economy through the provision of meat, milk, hides and draft power in 2021. By comparison, the pastoral (13.4 million head) and specialized dairy (1.8 million head) systems are much smaller. Productivity varied between different production systems, with differences in live body weight, productivity and prices from different sources. The estimated total cattle biomass was 14.8 billion kg in 2021, i.e., 11.3 billion kg in the mixed crop-livestock system, 2.60 billion kg in the pastoral system and 0.87 billion kg in the specialized dairy system. The total economic asset values of cattle in the mixed crop-livestock, pastoral and specialized dairy systems were estimated as 24.8, 5.28 and 1.37 billion USD, respectively. The total combined output value (e.g., beef, milk and draft power) of cattle production was 11.9 billion USD, which was 11.2% of the GDP in Ethiopia in 2021. This work quantifies the importance of cattle in the Ethiopian economy. These estimates of herd structure, reproductive performance, productivity, biomass, and economic value for cattle production systems in Ethiopia can be used to inform high-level policy, revealing under-performance and areas to prioritize and provide a basis for further technical analysis, such as disease burden.

6.
Front Vet Sci ; 10: 1049633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456963

RESUMEN

Livestock movements contribute to the spread of several infectious diseases. Data on livestock movements can therefore be harnessed to guide policy on targeted interventions for controlling infectious livestock diseases, including Rift Valley fever (RVF)-a vaccine-preventable arboviral fever. Detailed livestock movement data are known to be useful for targeting control efforts including vaccination. These data are available in many countries, however, such data are generally lacking in others, including many in East Africa, where multiple RVF outbreaks have been reported in recent years. Available movement data are imperfect, and the impact of this uncertainty in the utility of movement data on informing targeting of vaccination is not fully understood. Here, we used a network simulation model to describe the spread of RVF within and between 398 wards in northern Tanzania connected by cattle movements, on which we evaluated the impact of targeting vaccination using imperfect movement data. We show that pre-emptive vaccination guided by only market movement permit data could prevent large outbreaks. Targeted control (either by the risk of RVF introduction or onward transmission) at any level of imperfect movement information is preferred over random vaccination, and any improvement in information reliability is advantageous to their effectiveness. Our modeling approach demonstrates how targeted interventions can be effectively used to inform animal and public health policies for disease control planning. This is particularly valuable in settings where detailed data on livestock movements are either unavailable or imperfect due to resource limitations in data collection, as well as challenges associated with poor compliance.

7.
Risk Anal ; 42(5): 989-1006, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34590330

RESUMEN

East Africa is a hotspot for foodborne diseases, including infection by nontyphoidal Salmonella (NTS), a zoonotic pathogen that may originate from livestock. Urbanization and increased demand for animal protein drive intensification of livestock production and food processing, creating risks and opportunities for food safety. We built a probabilistic mathematical model, informed by prior beliefs and dedicated stakeholder interviews and microbiological research, to describe sources and prevalence of NTS along the beef supply chain in Moshi, Tanzania. The supply chain was conceptualized using a bow tie model, with terminal livestock markets as pinch point, and a forked pathway postmarket to compare traditional and emerging supply chains. NTS was detected in 36 (7.7%) of 467 samples throughout the supply chain. After combining prior belief and observational data, marginal estimates of true NTS prevalence were 4% in feces of cattle entering the beef supply and 20% in raw meat at butcheries. Based on our model and sensitivity analyses, true NTS prevalence was not significantly different between supply chains. Environmental contamination, associated with butchers and vendors, was estimated to be the most likely source of NTS in meat for human consumption. The model provides a framework for assessing the origin and propagation of NTS along meat supply chains. It can be used to inform decision making when economic factors cause changes in beef production and consumption, such as where to target interventions to reduce risks to consumers. Through sensitivity and value of information analyses, the model also helps to prioritize investment in additional research.


Asunto(s)
Carne , Salmonella , Animales , Bovinos , Ganado , Carne/microbiología , Modelos Estadísticos , Tanzanía
8.
Prev Vet Med ; 159: 57-64, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30314791

RESUMEN

This was a retrospective cohort study using data collected from a large-scale dairy herd in Kenya (n = 328 female animals), to investigate the effects of foot-and-mouth disease (FMD) on herd fertility performance following a confirmed outbreak in a regularly vaccinated herd. Kaplan-Meier graphs were used to depict differences in survival functions between exposure groups and Cox regression models were used to calculate hazard ratios (HR) for associations between being clinical FMD cases and the following fertility outcomes: age at first calving; fertility failure related culling (not in calf); time to first service; time to conception. Potential confounding variables investigated and controlled for were age, breed, parity, stage of lactation/gestation and eligibility for service. A case control study was nested within the cohort to investigate the effects of disease on conception HR following calving by comparing animals susceptible to fertility suppression at the time of the outbreak (cases) to animals that had conceived prior to the outbreak (controls). The median age of first calving in clinically affected young-stock was 2.7 months higher than non-clinical cases (adjusted HR = 0.37, 95%CI 0.21-0.67, P = 0.01). There was no evidence of a difference in fertility related culling and times to first service and conception. Animals susceptible to fertility suppression at the time of the outbreak had a lower hazard of conception compared to animals served prior to the outbreak (HR = 0.56, 95%CI 0.41-0.75, P = 0.01). Within the herd, the odds of being a case decreased with parity and age likely related to the lifetime number of vaccination doses received which may reduce the impact among older animals in the herd. Moreover, one would expect the impact to be higher in a non-vaccinating herd to be higher. Notwithstanding these limitations, the results of this study provide evidence that FMD outbreaks in endemic settings impact herd fertility performance. An increased age at first calving is likely to increase rearing costs and reduce an animal's lifetime productivity while poorer conception rates will likely extend calving intervals. Impaired herd fertility and production will incur higher costs to the farmer and society as animals are less productive which for FMD can extend beyond the outbreak period where economic studies tend to focus. These impacts of FMD on herd fertility should be considered when conducting benefit-cost analyses of FMD control to inform resource allocation.


Asunto(s)
Enfermedades de los Bovinos/fisiopatología , Fertilidad , Fiebre Aftosa/fisiopatología , Animales , Estudios de Casos y Controles , Bovinos , Enfermedades de los Bovinos/epidemiología , Estudios de Cohortes , Industria Lechera , Femenino , Fiebre Aftosa/epidemiología , Incidencia , Kenia/epidemiología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...