Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939223

RESUMEN

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Asunto(s)
Ácido Peracético , Peróxidos , Ligandos , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro , Hemo/química , Tirosina , Carbono
3.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38013689

RESUMEN

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

4.
IUCrJ ; 10(Pt 6): 642-655, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870936

RESUMEN

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.

5.
Nature ; 617(7961): 629-636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138085

RESUMEN

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Asunto(s)
Oxígeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Agua/química , Agua/metabolismo , Manganeso/química , Manganeso/metabolismo , Calcio/química , Calcio/metabolismo , Peróxidos/metabolismo
6.
FEBS Lett ; 597(1): 30-37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310373

RESUMEN

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.


Asunto(s)
Fotosíntesis , Agua , Agua/química , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Rayos Láser , Oxígeno/química
7.
Nano Lett ; 22(10): 3976-3982, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35561341

RESUMEN

Solid-state materials are currently being explored as a platform for the manipulation of spins for spintronics and quantum information science. More broadly, a wide spectrum of ferroelectric materials, spanning from inorganic oxides to polymeric systems such as PVDF, present a different approach to explore quantum phenomena in which the spins are set and manipulated with electric fields. Using dilute Fe3+-doped ferroelectric PbTiO3-SrTiO3 superlattices as a model system, we demonstrate intrinsic spin-polarization control of spin directionality in complex ferroelectric vortices and skyrmions. Electron paramagnetic resonance (EPR) spectra show that the spins in the Fe3+ ion are strongly coupled to the local polarization and preferentially aligned perpendicular to the ferroelectric polar c axis in this complex vortex structure. The effect of polarization-spin directionality is corroborated by first-principles calculations, demonstrating the variation of the spin directionality with the polar texture and offering the potential for future quantum analogues of macroscopic magnetoelectric devices.

8.
J Inorg Biochem ; 230: 111768, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202981

RESUMEN

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Asunto(s)
Rayos Láser , Metano , Cristalografía por Rayos X , Metano/química , Oxidación-Reducción , Oxidorreductasas , Temperatura
9.
Struct Dyn ; 8(6): 064302, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34849380

RESUMEN

In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kß x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kß XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kß1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.

10.
Sci Rep ; 11(1): 21787, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750381

RESUMEN

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Asunto(s)
Complejo de Proteína del Fotosistema I/química , Vitamina K 1/química , Cristalografía por Rayos X , Fotosíntesis , Estructura Terciaria de Proteína , Temperatura , Thermosynechococcus
11.
Nat Commun ; 12(1): 6531, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764256

RESUMEN

Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Enlace de Hidrógeno , Complejo de Proteína del Fotosistema II/genética , Protones , Agua
12.
Inorg Chem ; 60(23): 18553-18560, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34807605

RESUMEN

Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.

13.
Nat Chem ; 13(12): 1228-1234, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635813

RESUMEN

Molybdenum nitrogenase catalyses the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of molybdenum and homocitrate. We have previously identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the 'ninth sulfur' in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon 'ninth sulfur' insertion remain elusive. Here we trace the 'ninth sulfur' insertion using SeO32- and TeO32- as 'labelled' SO32-. Biochemical, electron paramagnetic resonance and X-ray absorption spectroscopy/extended X-ray absorption fine structure studies suggest a role of the 'ninth sulfur' in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2-- and Te2--like species into the L-cluster. Density functional theory calculations further point to a plausible mechanism involving in situ reduction of SO32- to S2-, thereby suggesting the utility of this reaction to label the catalytically important belt region for mechanistic investigations of nitrogenase.


Asunto(s)
Coenzimas/química , Proteínas Hierro-Azufre/química , Nitrogenasa/química , Ácido Selenioso/química , Azufre/química , Telurio/química , Proteínas Arqueales/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Methanosarcina/enzimología , Modelos Químicos , Espectroscopía de Absorción de Rayos X
14.
J Am Chem Soc ; 143(39): 16184-16196, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34559970

RESUMEN

An in-depth study of the mechanism of the azidation of C(sp3)-H bonds with Zhdankin's λ3-azidoiodane reagent catalyzed by iron(II)(pybox) complexes is reported. Previously, it was shown that tertiary and benzylic C(sp3)-H bonds of a range of complex molecules underwent highly site-selective azidation by reaction with a λ3-azidoiodane reagent and an iron(II)(pybox) catalyst under mild conditions. However, the mechanism of this reaction was unclear. Here, a series of mechanistic experiments are presented that reveal critical features responsible for the high selectivity and broad scope of this reaction. These experiments demonstrate the ability of the λ3-azidoiodane reagent to undergo I-N bond homolysis under mild conditions to form λ2-iodanyl and azidyl radicals that undergo highly site-selective and rate-limiting abstraction of a hydrogen atom from the substrate. The resultant alkyl radical then combines rapidly with a resting state iron(III)-azide complex, which is generated by the reaction of the λ3-azidoiodane with the iron(II)(pybox) complex, to form the C(sp3)-N3 bond. This mechanism is supported by the independent synthesis of well-defined iron complexes characterized by cyclic voltammetry, X-ray diffraction, and EPR spectroscopy, and by the reaction of the iron complexes with alkanes and the λ3-azidoiodane. Reaction monitoring and kinetic studies further reveal an unusual effect of the catalyst on the rate of formation of product and consumption of reactants and suggest a blueprint for the development of new processes leading to late-stage functionalization of C(sp3)-H bonds.


Asunto(s)
Hierro/química , Compuestos Organometálicos/síntesis química , Catálisis , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química
15.
Angew Chem Int Ed Engl ; 60(49): 25815-25824, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459093

RESUMEN

The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH3 @CTF-bipyridine). This material and the counterpart AlH3 @CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27 Al MAS NMR and 27 Al{1 H} REDOR experiments, and computational spectroscopy reveal that AlH3 @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH3 binding to bipyridine results in single-electron transfer to form AlH2 (AlH3 )n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.

16.
Sci Adv ; 7(10)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33658210

RESUMEN

Magnetoelectrics, materials that exhibit coupling between magnetic and electric degrees of freedom, not only offer a rich environment for studying the fundamental materials physics of spin-charge coupling but also present opportunities for future information technology paradigms. We present results of electric field manipulation of spins in a ferroelectric medium using dilute ferric ion-doped lead titanate as a model system. Combining first-principles calculations and electron paramagnetic resonance (EPR), we show that the ferric ion spins are preferentially aligned perpendicular to the ferroelectric polar axis, which we can manipulate using an electric field. We also demonstrate coherent control of the phase of spin superpositions by applying electric field pulses during time-resolved EPR measurements. Our results suggest a new pathway toward the manipulation of spins for quantum and classical spintronics.

17.
J Phys Chem B ; 125(1): 36-48, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356277

RESUMEN

The primary electron donor P700 of the photosystem I (PSI) is a heterodimer consisting of two chlorophyll molecules. A series of electron-transfer events immediately following the initial light excitation leads to a stabilization of the positive charge by its cation radical form, P700+•. The electronic structure of P700+• and, in particular, its asymmetry with respect to the two chlorophyll monomers is of fundamental interest and is not fully understood up to this date. Here, we apply multifrequency X- (9 GHz) and Q-band (35 GHz) hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the electron spin density distribution in the cation radical P700+• of PSI from a thermophilic cyanobacterium Thermosynechococcus elongatus. Six 14N and two 1H distinct nuclei have been resolved in the HYSCORE spectra and parameters of the corresponding nuclear hyperfine and quadrupolar hyperfine interactions were obtained by combining the analysis of HYSCORE spectral features with direct numerical simulations. Based on a close similarity of the nuclear quadrupole tensor parameters, all of the resolved 14N nuclei were assigned to six out of total eight available pyrrole ring nitrogen atoms (i.e., four in each of the chlorophylls), providing direct evidence of spin density delocalization over the both monomers in the heterodimer. Using the obtained experimental values of the 14N electron-nuclear hyperfine interaction parameters, the upper limit of the electron spin density asymmetry parameter is estimated as RA/Bupper = 7.7 ± 0.5, while a tentative assignment of 14N observed in the HYSCORE spectra yields RB/A = 3.1 ± 0.5.


Asunto(s)
Electrones , Complejo de Proteína del Fotosistema I , Clorofila , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrónica
18.
J Am Chem Soc ; 142(48): 20489-20501, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33207117

RESUMEN

Biological and heterogeneous catalysts for the electrochemical CO2 reduction reaction (CO2RR) often exhibit a high degree of electronic delocalization that serves to minimize overpotential and maximize selectivity over the hydrogen evolution reaction (HER). Here, we report a molecular iron(II) system that captures this design concept in a homogeneous setting through the use of a redox non-innocent terpyridine-based pentapyridine ligand (tpyPY2Me). As a result of strong metal-ligand exchange coupling between the Fe(II) center and ligand, [Fe(tpyPY2Me)]2+ exhibits redox behavior at potentials 640 mV more positive than the isostructural [Zn(tpyPY2Me)]2+ analog containing the redox-inactive Zn(II) ion. This shift in redox potential is attributed to the requirement for both an open-shell metal ion and a redox non-innocent ligand. The metal-ligand cooperativity in [Fe(tpyPY2Me)]2+ drives the electrochemical reduction of CO2 to CO at low overpotentials with high selectivity for CO2RR (>90%) and turnover frequencies of 100 000 s-1 with no degradation over 20 h. The decrease in the thermodynamic barrier engendered by this coupling also enables homogeneous CO2 reduction catalysis in water without compromising selectivity or rates. Synthesis of the two-electron reduction product, [Fe(tpyPY2Me)]0, and characterization by X-ray crystallography, Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), variable temperature NMR, and density functional theory (DFT) calculations, support assignment of an open-shell singlet electronic structure that maintains a formal Fe(II) oxidation state with a doubly reduced ligand system. This work provides a starting point for the design of systems that exploit metal-ligand cooperativity for electrocatalysis where the electrochemical potential of redox non-innocent ligands can be tuned through secondary metal-dependent interactions.


Asunto(s)
Dióxido de Carbono/química , Complejos de Coordinación/química , Hierro/química , Catálisis , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Piridinas/química , Temperatura , Termodinámica , Zinc/química
19.
J Am Chem Soc ; 142(44): 18795-18813, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32976708

RESUMEN

Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(µ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron µ-carbyne complex (P6ArC)Fe2(µ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(µ-C)(µ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the µ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(µ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(µ-H)]+1 and [(P6ArC)Fe2(µ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.


Asunto(s)
Carbamatos/química , Complejos de Coordinación/química , Hierro/química , Dominio Catalítico , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Conformación Molecular , Nitrogenasa/química , Nitrogenasa/metabolismo , Oxidación-Reducción , Espectroscopía de Mossbauer
20.
Nanoscale ; 12(30): 16270-16284, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32760987

RESUMEN

Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...