Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Bull Math Biol ; 85(7): 55, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208444

RESUMEN

The developing world has been facing a significant health issue due to cholera as an endemic communicable disease. Lusaka was Zambia's worst affected province, with 5414 reported cases of cholera during the outbreak from late October 2017 to May 12, 2018. To explore the epidemiological characteristics associated with the outbreak, we fitted weekly reported cholera cases with a compartmental disease model that incorporates two transmission routes, namely environment-to-human and human-to-human. Estimates of the basic reproduction number show that both transmission modes contributed almost equally during the first wave. In contrast, the environment-to-human transmission appears to be mostly dominating factor for the second wave. Our study finds that a massive abundance of environmental vibrio's with a huge reduction in water sanitation efficacy triggered the secondary wave. To estimate the expected time to extinction (ETE) of cholera, we formulate the stochastic version of our model and find that cholera can last up to 6.5-7 years in Lusaka if any further outbreak occurs at a later time. Results indicate that a considerable amount of attention is to be paid to sanitation and vaccination programs in order to reduce the severity of the disease and to eradicate cholera from the community in Lusaka.


Asunto(s)
Cólera , Humanos , Cólera/epidemiología , Cólera/prevención & control , Zambia/epidemiología , Conceptos Matemáticos , Modelos Biológicos , Brotes de Enfermedades
2.
J R Soc Interface ; 20(202): 20230036, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37194270

RESUMEN

Frequent emergence of communicable diseases is a major concern worldwide. Lack of sufficient resources to mitigate the disease burden makes the situation even more challenging for lower-income countries. Hence, strategy development for disease eradication and optimal management of the social and economic burden has garnered a lot of attention in recent years. In this context, we quantify the optimal fraction of resources that can be allocated to two major intervention measures, namely reduction of disease transmission and improvement of healthcare infrastructure. Our results demonstrate that the effectiveness of each of the interventions has a significant impact on the optimal resource allocation in both long-term disease dynamics and outbreak scenarios. The optimal allocation strategy for long-term dynamics exhibits non-monotonic behaviour with respect to the effectiveness of interventions, which differs from the more intuitive strategy recommended in the case of outbreaks. Further, our results indicate that the relationship between investment in interventions and the corresponding increase in patient recovery rate or decrease in disease transmission rate plays a decisive role in determining optimal strategies. Intervention programmes with decreasing returns promote the necessity for resource sharing. Our study provides fundamental insights into determining the best response strategy when controlling epidemics in resource-constrained situations.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Humanos , Epidemias/prevención & control , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades/prevención & control , Asignación de Recursos
3.
J Theor Biol ; 555: 111298, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36202233

RESUMEN

The introduction of noise to signals can alter central regulatory switches of cellular processes leading to diseases. Noise is inherently present in the cellular signalling system and plays a decisive role in the input-output (I/O) relation. The current study aims to understand the noise tolerance of motif structures in the cell signalling processes. The vulnerability of a node to noise could be a significant factor in causing signalling error and need to be controlled. We developed stochastic differential equation (SDE) based mathematical models for different network motifs with two nodes and studied the association between motif structure and signal-noise relation. A two-dimensional parameter space analysis on motif sensitivity with noise and input signal variation was performed to classify and rank the motifs. Identifying sensitive motifs and their high druggability infers their significance in screening potential drug-target candidates. Finally, we proposed a theoretical framework to identify nodes from a network as potential drug targets. We applied this mathematical formalism to three cancer networks to identify drug-targets and validated them with existing databases.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Modelos Teóricos
4.
J Biol Phys ; 48(3): 295-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779141

RESUMEN

Modeling and analysis of biological growth curves are an age-old study area in which much effort has been dedicated to developing new growth equations. Recent efforts focus on identifying the correct model from a large number of equations. The relative growth rate (RGR), developed by Fisher (1921), has largely been used in the statistical inference of biological growth curve models. It is convenient to express growth equations using RGR, where RGR can be expressed as functions of size or time. Even though RGR is model invariant, it has limitations when it comes to identifying actual growth patterns. By proposing interval-specific rate parameters (ISRPs), Pal et al. (2018) appeared to solve this problem. The ISRP is based on the mathematical structure of the growth equations. Therefore, it is not model invariant. The current effort is to develop a measure of growth that is model invariant like RGR and shares the advantages of ISRP. We propose a new measure of growth, which we call instantaneous maturity rate (IMR). IMR is model invariant, which allows it to distinguish growth patterns more clearly than RGR. IMR is also scale-invariant and can take several forms including increasing, decreasing, constant, sigmoidal, bell-shaped, and bathtub. A wide range of possible IMR shapes makes it possible to identify different growth curves. The estimation procedure of IMR under a stochastic setup has been developed. Statistical properties of empirical IMR estimators have also been investigated in detail. In addition to extensive simulation studies, real data sets have been analyzed to prove the utility of IMR.


Asunto(s)
Modelos Biológicos , Simulación por Computador
5.
Chaos ; 31(7): 071101, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34340350

RESUMEN

We propose a deterministic compartmental model of infectious disease that considers the test kits as an important ingredient for the suppression and mitigation of epidemics. A rigorous simulation (with an analytical argument) is provided to reveal the effective reduction of the final outbreak size and the peak of infection as a function of basic reproduction number in a single patch. Furthermore, to study the impact of long and short-distance human migration among the patches, we consider heterogeneous networks where the linear diffusive connectivity is determined by the network link structure. We numerically confirm that implementation of test kits in a fraction of nodes (patches) having larger degrees or betweenness centralities can reduce the peak of infection (as well as the final outbreak size) significantly. A next-generation matrix-based analytical treatment is provided to find out the critical transmission probability in the entire network for the onset of epidemics. Finally, the optimal intervention strategy is validated in two real networks: the global airport network and the transportation network of Kolkata, India.


Asunto(s)
Epidemias , Número Básico de Reproducción , Simulación por Computador , Brotes de Enfermedades , Humanos , Transportes
6.
Phys Rev E ; 104(1-1): 014308, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34412296

RESUMEN

A reservoir computing based echo state network (ESN) is used here for the purpose of predicting the spread of a disease. The current infection trends of a disease in some targeted locations are efficiently captured by the ESN when it is fed with the infection data for other locations. The performance of the ESN is first tested with synthetic data generated by numerical simulations of independent uncoupled patches, each governed by the classical susceptible-infected-recovery model for a choice of distributed infection parameters. From a large pool of synthetic data, the ESN predicts the current trend of infection in 5% patches by exploiting the uncorrelated infection trend of 95% patches. The prediction remains consistent for most of the patches for approximately 4 to 5 weeks. The machine's performance is further tested with real data on the current COVID-19 pandemic collected for different countries. We show that our proposed scheme is able to predict the trend of the disease for up to 3 weeks for some targeted locations. An important point is that no detailed information on the epidemiological rate parameters is needed; the success of the machine rather depends on the history of the disease progress represented by the time-evolving data sets of a large number of locations. Finally, we apply a modified version of our proposed scheme for the purpose of future forecasting.

7.
J Theor Biol ; 528: 110846, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314732

RESUMEN

In the predator-prey system, predators can affect the prey population (1) by direct killing and (2) by inducing predation fear, which ultimately force preys to adopt some anti-predator strategies. However, the anti-predator strategy is not the same for all individual preys of different life stages. Also, anti-predator behavior has both cost and benefit, but most of the mathematical models observed the dynamics by incorporating its cost only. In the present study, we formulate a predator-prey model dividing the prey population into two stages: juvenile and adult. We assume that adult preys are only adapting group defense as an anti-predator strategy when they are sensitive to predation. Group defense plays a positive role for adult prey by reducing their predation, but, on the negative side, it simultaneously decreases their reproductive potential. A parameter, anti-predator sensitivity is introduced to interlink both the benefit and cost of group defense. Our result shows that when adult preys are not showing anti-predator behavior, with an increase of maturation rate, the system exhibits a population cycle of abruptly increasing amplitude, which may drive all species of the system to extinction. Anti-predator sensitivity may exclude oscillation through homoclinic bifurcation and avert the prey population for any possible random extinction. Anti-predator sensitivity also decreases the predator population density and produces bistable dynamics. Higher values of anti-predator sensitivity may lead to the extinction of the predator population and benefit adult preys to persist with large population density. Below a threshold value of anti-predator sensitivity, it may possible to retain the predator population in the system by increasing the fear level of the predator. We also observe our fear-induced stage-structured model exhibits interesting and rich dynamical behaviors, various types of bistabilities in different bi-parameter planes. Finally, we discuss the potential impact of our findings.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Miedo , Dinámica Poblacional , Conducta Predatoria
8.
Bioinformatics ; 37(22): 4156-4163, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34021761

RESUMEN

MOTIVATION: Bistability is one of the salient dynamical features in various all-or-none kinds of decision-making processes. The presence of bistability in a cell signalling network plays a key role in input-output (I/O) relation. Our study is aiming to capture and emphasize the role of motif structure influencing the I/O relation between two nodes in the context of bistability. Here, a model-based analysis is made to investigate the critical conditions responsible for the emergence of different bistable protein-protein interaction (PPI) motifs and their possible applications to find the potential drug-targets. RESULTS: The global sensitivity analysis is used to identify sensitive parameters and their role in maintaining the bistability. Additionally, the bistable switching through hysteresis is explored to develop an understanding of the underlying mechanisms involved in the cell signalling processes, when significant motifs exhibiting bistability have emerged. Further, we elaborate the application of the results by the implication of the emerged PPI motifs to identify potential drug-targets in three cancer networks, which is validated with existing databases. The influence of stochastic perturbations that could hinder desired functionality of any signalling networks is also described here. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Biología Computacional
9.
J Theor Biol ; 523: 110711, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-33862090

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19), caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already created emergency situations in almost every country of the world. The disease spreads all over the world within a very short period of time after its first identification in Wuhan, China in December, 2019. In India, the outbreak, starts on 2nd March, 2020 and after that the cases are increasing exponentially. Very high population density, the unavailability of specific medicines or vaccines, insufficient evidences regarding the transmission mechanism of the disease also make it more difficult to fight against the disease properly in India. Mathematical models have been used to predict the disease dynamics and also to assess the efficiency of the intervention strategies in reducing the disease burden. In this work, we propose a mathematical model to describe the disease transmission mechanism between the individuals. Our proposed model is fitted to the daily new reported cases in India during the period 2nd March, 2020 to 12th November, 2020. We estimate the basic reproduction number, effective reproduction number and epidemic doubling time from the incidence data for the above-mentioned period. We further assess the effect of implementing preventive measures in reducing the new cases. Our model projects the daily new COVID-19 cases in India during 13th November, 2020 to 25th February, 2021 for a range of intervention strength. We also investigate that higher intervention effort is required to control the disease outbreak within a shorter period of time in India. Moreover, our analysis reveals that the strength of the intervention should be increased over the time to eradicate the disease effectively.


Asunto(s)
COVID-19 , Número Básico de Reproducción , China , Humanos , India/epidemiología , SARS-CoV-2
10.
Appl Math Comput ; 404: 126251, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33828346

RESUMEN

An outbreak of respiratory disease caused by a novel coronavirus is ongoing from December 2019. As of December 14, 2020, it has caused an epidemic outbreak with more than 73 million confirmed infections and above 1.5 million reported deaths worldwide. During this period of an epidemic when human-to-human transmission is established and reported cases of coronavirus disease 2019 (COVID-19) are rising worldwide, investigation of control strategies and forecasting are necessary for health care planning. In this study, we propose and analyze a compartmental epidemic model of COVID-19 to predict and control the outbreak. The basic reproduction number and the control reproduction number are calculated analytically. A detailed stability analysis of the model is performed to observe the dynamics of the system. We calibrated the proposed model to fit daily data from the United Kingdom (UK) where the situation is still alarming. Our findings suggest that independent self-sustaining human-to-human spread ( R 0 > 1 , R c > 1 ) is already present. Short-term predictions show that the decreasing trend of new COVID-19 cases is well captured by the model. Further, we found that effective management of quarantined individuals is more effective than management of isolated individuals to reduce the disease burden. Thus, if limited resources are available, then investing on the quarantined individuals will be more fruitful in terms of reduction of cases.

11.
Nonlinear Dyn ; 103(3): 2973-2992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584009

RESUMEN

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) can cause mild to severe acute respiratory illness with a high mortality rate. As of January 2020, more than 2500 cases of MERS-CoV resulting in around 860 deaths were reported globally. In the absence of neither effective treatment nor a ready-to-use vaccine, control measures can be derived from mathematical models of disease epidemiology. In this manuscript, we propose and analyze a compartmental model of zoonotic MERS-CoV transmission with two co-circulating strains. The human population is considered with eight compartments while the zoonotic camel population consist of two compartments. The expression of basic reproduction numbers are obtained for both single strain and two strain version of the proposed model. We show that the disease-free equilibrium of the system with single stain is globally asymptotically stable under some parametric conditions. We also demonstrate that both models undergo backward bifurcation phenomenon, which in turn indicates that only keeping R 0 below unity may not ensure eradication. To the best of the authors knowledge, backward bifurcation was not shown in a MERS-CoV transmission model previously. Further, we perform normalized sensitivity analysis of important model parameters with respect to basic reproduction number of the proposed model. Furthermore, we perform optimal control analysis on different combination interventions with four components namely preventive measures such as use of masks, isolation of strain-1 infected people, strain-2 infected people and infected camels. Optimal control analysis suggests that combination of preventive measures and isolation of infected camels will eventually eradicate the disease from the community.

12.
PLoS One ; 16(1): e0244543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33507898

RESUMEN

After an epidemic outbreak, the infection persists in a community long enough to engulf the entire susceptible population. Local extinction of the disease could be possible if the susceptible population gets depleted. In large communities, the tendency of eventual damp down of recurrent epidemics is balanced by random variability. But, in small communities, the infection would die out when the number of susceptible falls below a certain threshold. Critical community size (CCS) is considered to be the mentioned threshold, at which the infection is as likely as not to die out after a major epidemic for small communities unless reintroduced from outside. The determination of CCS could aid in devising systematic control strategies to eradicate the infectious disease from small communities. In this article, we have come up with a simplified computation based approach to deduce the CCS of HIV disease dynamics. We consider a deterministic HIV model proposed by Silva and Torres, and following Nåsell, introduce stochasticity in the model through time-varying population sizes of different compartments. Besides, Metcalf's group observed that the relative risk of extinction of some infections on islands is almost double that in the mainlands i.e. infections cease to exist at a significantly higher rate in islands compared to the mainlands. They attributed this phenomenon to the greater recolonization in the mainlands. Interestingly, the application of our method on demographic facts and figures of countries in the AIDS belt of Africa led us to expect that existing control measures and isolated locations would assist in temporary eradication of HIV infection much faster. For example, our method suggests that through systematic control strategies, after 7.36 years HIV epidemics will temporarily be eradicated from different communes of island nation Madagascar, where the population size falls below its CCS value, unless the disease is reintroduced from outside.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/epidemiología , Infecciones por VIH/epidemiología , África/epidemiología , Brotes de Enfermedades , Epidemias , VIH/aislamiento & purificación , Humanos , Madagascar/epidemiología , Modelos Estadísticos , Densidad de Población , Factores de Riesgo , Procesos Estocásticos
13.
Chaos ; 30(8): 083124, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32872823

RESUMEN

In the present paper, we investigate the impact of time delay during cooperative hunting in a predator-prey model. We consider that cooperative predators do not aggregate in a group instantly, but individuals use different stages and strategies such as tactile, visual, vocal cues, or a suitable combination of these to communicate with each other. We observe that delay in hunting cooperation has stabilizing as well as destabilizing effects in the system. Also, for an increase in the strength of the delay, the system dynamics switch multiple times and eventually become chaotic. We see that depending on the threshold of time delay, the system may restore its original state or may go far away from its original state and unable to recollect its memory. Furthermore, we explore the dynamics of the system in different bi-parameter spaces and observe that for a particular range of other parameter values, the system dynamics switch multiple times with an increase of delay in all the planes. Different kinds of multistability behaviors, the coexistence of multiple attractors, and interesting changes in the basins of attraction of the system are also observed. We infer that depending on the initial population size and the strength of cooperation delay, the populations can exhibit stable coexistence, oscillating coexistence, or extinction of the predator species.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Ecosistema , Humanos , Modelos Biológicos , Dinámica Poblacional
14.
Chaos Solitons Fractals ; 139: 110078, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32834620

RESUMEN

In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distancing measure, we considered a new mathematical model on COVID-19 that incorporates lockdown effect. By validating our model to the data on notified cases from five different states and overall India, we estimated several epidemiologically important parameters as well as the basic reproduction number (R 0). Combining the mechanistic mathematical model with different statistical forecast models, we projected notified cases in the six locations for the period May 17, 2020, till May 31, 2020. A global sensitivity analysis is carried out to determine the correlation of two epidemiologically measurable parameters on the lockdown effect and also on R 0. Our result suggests that lockdown will be effective in those locations where a higher percentage of symptomatic infection exists in the population. Furthermore, a large scale COVID-19 mass testing is required to reduce community infection. Ensemble model forecast suggested a high rise in the COVID-19 notified cases in most of the locations in the coming days. Furthermore, the trend of the effective reproduction number (Rt ) during the projection period indicates if the lockdown measures are completely removed after May 17, 2020, a high spike in notified cases may be seen in those locations. Finally, combining our results, we provided an effective lockdown policy to reduce future COVID-19 transmission in India.

15.
Chaos Solitons Fractals ; 140: 110163, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32834647

RESUMEN

The outbreak of COVID-19 caused by SARS-CoV-2 is spreading rapidly around the world, which is causing a major public health concerns. The outbreaks started in India on March 2, 2020. As of April 30, 2020, 34,864 confirmed cases and 1154 deaths are reported in India and more than 30,90,445 confirmed cases and 2,17,769 deaths are reported worldwide. Mathematical models may help to explore the transmission dynamics, prediction and control of COVID-19 in the absence of an appropriate medication or vaccine. In this study, we consider a mathematical model on COVID-19 transmission with the imperfect lockdown effect. The basic reproduction number, R 0, is calculated using the next generation matrix method. The system has a disease-free equilibrium (DFE) which is locally asymptotically stable whenever R 0 < 1. Moreover, the model exhibits the backward bifurcation phenomenon, where the stable DFE coexists with a stable endemic equilibrium when R 0 < 1. The epidemiological implications of this phenomenon is that the classical epidemiological requirement of making R 0 less than unity is only a necessary, but not sufficient for effectively controlling the spread of COVID-19 outbreak. It is observed that the system undergoes backward bifurcation which is a new observation for COVID-19 disease transmission model. We also noticed that under the perfect lockdown scenario, there is no possibility of having backward bifurcation. Using Lyapunov function theory and LaSalle Invariance Principle, the DFE is shown globally asymptotically stable for perfect lockdown model. We have calibrated our proposed model parameters to fit daily data from India, Mexico, South Africa and Argentina. We have provided a short-term prediction for India, Mexico, South Africa and Argentina of future cases of COVID-19. We calculate the basic reproduction number from the estimated parameters. We further assess the impact of lockdown during the outbreak. Furthermore, we find that effective lockdown is very necessary to reduce the burden of diseases.

16.
Math Biosci ; 325: 108366, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387647

RESUMEN

Despite centuries of enormous control efforts, mosquito-borne diseases continue to show upward trend of morbidity. According to WHO reports, malaria caused 438000 deaths in the year 2015 and dengue cases have been increased 30-fold over the last five decades. To control these diseases, it is necessary to understand the transmission dynamics of them among mosquitoes. There are some vertically transmitted mosquito-borne diseases which can also be spread among mosquitoes through sexual contact (e.g., dengue, zika, chikungunya). Recent experimental observations indicate that for virus persistence in mosquito population, the role of venereal transmission cannot be ignored. It is therefore important to investigate which transmission route is more responsible for the persistence of the virus when there is no host. To this aim, we propose and analyze a novel compartmental model considering mosquito population only. To the best of authors knowledge, this is the first attempt to take into account both vertical and sexual transmission of the virus in a mathematical model. Expression representing the basic reproduction number is derived using Jacobian approach. Local stability conditions for disease-free equilibrium and complete infection equilibrium are obtained. Global sensitivity analysis of the system is performed with respect to an epidemiologically important response. While investigating the impact of sexual transmission in presence of vertical transmission, we observed that sexual transmission route has the potential to drive the equilibrium from disease free to endemic states. Further numerical experiments reveal that the virus will have higher half life in fertilized infected female mosquitoes for vertical transmission only than for venereal transmission alone. Furthermore, when both transmission pathways are active, a variety of parameters indicate threshold like behavior of the infection.


Asunto(s)
Modelos Biológicos , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/transmisión , Virosis/transmisión , Animales , Número Básico de Reproducción/estadística & datos numéricos , Simulación por Computador , Dengue/transmisión , Dengue/virología , Virus del Dengue , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Masculino , Conceptos Matemáticos , Mosquitos Vectores/fisiología , Conducta Sexual Animal , Enfermedades Transmitidas por Vectores/epidemiología , Virosis/epidemiología
17.
Physica A ; 548: 123846, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32292237

RESUMEN

Present study considers the situation where the removal of population is adopted as a prevention measure for isolating the susceptible population from an infected region to reduce the disease prevalence. To investigate the scenario, a dynamic error based method, Z-type control is applied in an SI type disease model with the aim of achieving a predetermined disease prevalence. The controlled system is designed by introducing a new compartment (the population in an infection-free region) in the uncontrolled system to capture the removal of susceptible population from the infected region to an infection free region. By performing numerical simulations, our study shows that using Z-control mechanism, the removal of susceptible to an infection free region can effectively achieve a predetermined disease prevalence. The removal rates required for achieving a specific reduction in infected population for different levels of disease endemicity are quantified. Furthermore, the global sensitivity analysis (PRCC) is also performed to have a more clear insights on the correlations of the control parameter with the model parameters.

18.
PLoS Negl Trop Dis ; 14(2): e0008065, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059047

RESUMEN

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe acute respiratory illness with a case fatality rate (CFR) of 35,5%. The highest number of MERS-CoV cases are from Saudi-Arabia, the major worldwide hotspot for this disease. In the absence of neither effective treatment nor a ready-to-use vaccine and with yet an incomplete understanding of its epidemiological cycle, prevention and containment measures can be derived from mathematical models of disease epidemiology. We constructed 2-strain models to predict past outbreaks in the interval 2012-2016 and derive key epidemiological information for Macca, Madina and Riyadh. We approached variability in infection through three different disease incidence functions capturing social behavior in response to an epidemic (e.g. Bilinear, BL; Non-monotone, NM; and Saturated, SAT models). The best model combination successfully anticipated the total number of MERS-CoV clinical cases for the 2015-2016 season and accurately predicted both the number of cases at the peak of seasonal incidence and the overall shape of the epidemic cycle. The evolution in the basic reproduction number (R0) warns that MERS-CoV may easily take an epidemic form. The best model correctly captures this feature, indicating a high epidemic risk (1≤R0≤2,5) in Riyadh and Macca and confirming the alleged co-circulation of more than one strain. Accurate predictions of the future MERS-CoV peak week, as well as the number of cases at the peak are now possible. These results indicate public health agencies should be aware that measures for strict containment are urgently needed before new epidemics take off in the region.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Epidemias , Coronavirus del Síndrome Respiratorio de Oriente Medio , Modelos Biológicos , Portador Sano , Simulación por Computador , Humanos , Factores de Riesgo
19.
J Theor Biol ; 490: 110156, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31935415

RESUMEN

Positive interactions are quite common in nature but are less studied. While positive association among species has been studied in ecological literature, how such interactions will impact the ecological dynamics when they occur within antagonist communities is not understood. Motivated by this, we studied a community module consisting of two prey species and a predator population where the prey species are in mutualistic relationship while the predators exhibit hunting cooperation. Our result reconfirms that both mutualism and hunting cooperation destabilizes the system. Predator cooperation may result in extinction of the relatively more attacked prey and a minimal mutualism strength is required in order to retain the coexistence equilibrium. A higher degree of cooperation among predators can lead to bistable dynamics which increases the survival chance of the otherwise extinct prey. Mutualistic association further enhances this effect thereby increasing the chance of coexistence. Generally, cooperative hunting is known to produce bistability but this system also demonstrated tristable dynamics. Moreover, the wide range of multi-stability exhibited by our model indicate the high sensitivity of the system to small perturbations. Overall, our study suggests that the interplay between the prey mutualism and predator cooperation may result in unintuitive dynamics which might be important in the context of community ecology.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Ecosistema , Dinámica Poblacional , Simbiosis
20.
Math Biosci Eng ; 16(5): 5146-5179, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31499707

RESUMEN

The predation strategy for predators and the avoidance strategy of prey are important topics in ecology and evolutionary biology. Both prey and predators adjust their behaviours in order to gain the maximal benefits and to increase their biomass for each. In the present paper, we consider a modified Leslie-Gower predator-prey model where predators cooperate during hunting and due to fear of predation risk, prey populations show anti-predator behaviour. We investigate step by step the impact of hunting cooperation and fear effect on the dynamics of the system. We observe that in the absence of fear effect, hunting cooperation can induce both supercritical and subcritical Hopf- bifurcations. It is also observed that fear factor can stabilize the predator-prey system by excluding the existence of periodic solutions and makes the system more robust compared to hunting cooperation. Moreover, the system shows two different types of bi-stabilities behaviour: one is between coexisting equilibrium and limit cycle oscillation, and another is between prey-free equilibrium and coexisting equilibrium. We also observe generalized Hopf-bifurcation and Bogdanov-Takens bifurcation in two parameter bifurcation analysis. We perform extensive numerical simulations for supporting evidence of our analytical findings.


Asunto(s)
Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria , Algoritmos , Animales , Biomasa , Ecosistema , Miedo , Modelos Biológicos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...