Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biotechnol ; 393: 17-30, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025368

RESUMEN

Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables-pH, cell density, amount of RA, and temperature-the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.


Asunto(s)
Reactores Biológicos , Candida parapsilosis , Aceite de Ricino , Lactonas , Ácidos Ricinoleicos , Ácidos Ricinoleicos/metabolismo , Ácidos Ricinoleicos/química , Reactores Biológicos/microbiología , Aceite de Ricino/química , Aceite de Ricino/metabolismo , Candida parapsilosis/metabolismo , Lactonas/metabolismo , Lactonas/química , Aromatizantes/metabolismo , Aromatizantes/química , Biotransformación
2.
J Biotechnol ; 377: 34-42, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37848135

RESUMEN

Flavour molecules are generated now-a-days through microbial fermentation on a commercial scale. γ-Decalactone (GDL) is an important molecule due to its long-lasting flavouring impact as buttery, coconut and peach-type. In the current study, 33 microorganisms were isolated from different fruit sources, and their screening for target GDL production was performed. Using DNA sequencing, two potential strains yielding good amounts of GDL were identified from pineapple and strawberry fruits. The identified strains were Metschnikowia vanudenii (OP954735) and Candida parapsilosis (OP954733), and further optimized by Taguchi method. The effectiveness of lactone production is influenced by the rate of microbial growth under various operating conditions. The factors such as substrate concentration, pH, temperature, cell density and rotation (rpm) with 3 levels were applied for the GDL production using M. vanudenii (OP954735) and C. parapsilosis (OP954733) strains. The results revealed that the highest molar conversion of GDL was 24.69% (115.7 mg/g quantitative yield) and 52.69% (272.0 mg/g quantitative yield) at the optimal conditions using SB-62 and PA-19 strains, respectively. The two novel strains are reported for the first time for production of γ-decalactone and overall, this study opens up the possibility of using Taguchi design for large scale up process development for producing food flavours utilising environmentally friendly natural strains.


Asunto(s)
Lactonas , Levaduras , Levaduras/genética , Levaduras/metabolismo , Lactonas/química , Biotransformación
3.
Crit Rev Food Sci Nutr ; 63(29): 10047-10078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35531939

RESUMEN

The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.


Asunto(s)
Lactonas , Ingeniería Metabólica , Lactonas/química , Lactonas/metabolismo , Biotransformación , Oxidación-Reducción , Saccharomyces cerevisiae/metabolismo
4.
J Food Sci Technol ; 59(1): 86-94, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35068554

RESUMEN

Deep frying of food is a common practice that leads to the formation of lipid oxidation products. These lipid oxidation products have a role in the Maillard reaction, which ultimately leads to the formation of cancer-causing and neurotoxic substance acrylamide. In this regard, the Psidium guajava leaves extract-treated sunflower oil on oxidative stability and acrylamide content in pooris a popular deep-fried staple food in India were studied and compared with synthetic antioxidant butylated hydroxytoluene (BHT) till four frying cycles. P. guajava leaves contain 173.33 ± 1.95 mg GAE/g extract total phenolic content and 20.43 ± 0.25 mg RUE/g extract total flavonoid content. Some of the phytochemicals in the extract were identified and quantified by HPTLC. P. guajava leaves extract (1 g) contained 0.039 mg gallic acid, 0.196 mg rutin, 0.021 mg naringenin, 0.059 mg ferulic acid. The IC50 values for guava leaves extract, BHT, and ascorbic acid were 61.4, 30.4, 26.6 µg/mL, respectively. The peroxide and p-anisidine values indicated that P. guajava leaves extract inhibited lipid oxidation and provided oxidative stability. Pooris fried in P. guajava leaves extract-treated, BHT treated sunflower oil contained a lower acrylamide than pooris fried in control sunflower oil. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-021-04984-y).

5.
J Basic Microbiol ; 61(1): 4-14, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32896907

RESUMEN

Implementing two-way strategies to enhance the lipid production in Rhodotorula mucilaginosa with the help of metabolic engineering was focused on the overexpression of acetyl coenzyme A carboxylase (ACC1 carboxylase) gene and repression of 3-hydroxy 3-methylglutaryl reductase (HMG-CoA reductase). Using an inducer (sodium citrate) and inhibitor (rosuvastatin), the amounts of biomass, lipid, and carotenoid were estimated. In the presence of inhibitor (200 mM), 62% higher lipid concentration was observed, while 44% enhancement was recorded when inducer (3 mM) was used. A combination of both inhibitor and inducer resulted in a 57% increase in lipid concentration by the oleaginous yeast. These results were again confirmed by real-time polymerase chain reaction by targeting the expression of the genes coding for ACC1 carboxylase and 13-fold increase was recorded in the presence of inducer as compared with control. This combined strategy (inducer and inhibitor use) has been reported for the first time as far as the best of our knowledge. The metabolic engineering strategies reported here will be a powerful approach for the enhanced commercial production of lipids.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Ácidos Grasos/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Rhodotorula/metabolismo , Biomasa , Carotenoides/metabolismo , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Ingeniería Metabólica , Rhodotorula/efectos de los fármacos , Rhodotorula/genética , Rhodotorula/crecimiento & desarrollo , Rosuvastatina Cálcica/farmacología , Citrato de Sodio/farmacología
6.
Electron. j. biotechnol ; 44: 60-68, Mar. 2020. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1087705

RESUMEN

Background: Oleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources. Results: A total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1 . Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box­Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids. Conclusion: The fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification


Asunto(s)
Trichosporon/metabolismo , Oryza , Xilosa/aislamiento & purificación , Trichosporon/química , Aceites/química , Lipogénesis , Biocombustibles , Fermentación , Glucosa/aislamiento & purificación , Hidrólisis , Lignina/metabolismo , Lípidos/biosíntesis
7.
Prep Biochem Biotechnol ; 48(3): 296-302, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29424627

RESUMEN

Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g-1 of biomass) followed by R. mucilaginosa (0.022 g g-1 of biomass) and G. wiiroense (0.020 g g-1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g-1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.


Asunto(s)
Biocombustibles/microbiología , Bioprospección/métodos , Ganoderma/química , Microbiología Industrial/métodos , Lípidos/análisis , Rhodotorula/química , Saccharomyces/química , Biocombustibles/análisis , Ácidos Grasos/análisis , Ganoderma/metabolismo , Metabolismo de los Lípidos , Rhodotorula/metabolismo , Saccharomyces/metabolismo , Residuos Sólidos/análisis , Almidón/química , Almidón/metabolismo
8.
J Basic Microbiol ; 53(4): 327-35, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22736484

RESUMEN

This study was conducted to assess the effect of microbial inoculation in Jatropha cake composting with different vegetable waste. The microbial inoculums composed of fungal strains (Aspergillus awamori, Aspergillus nidulans, Trichoderma viride, Phanerochaete chrysosporium) and bacterial inoculums (Pseudomonas striata as phosphorus solublizer and Azotobacter chroococcum as nitrogen fixer) were added to the compost mixture after the thermophilic phase was over for bioaugmenting of Jatropha cake under aerobic and partial anaerobic conditions. Addition of both fungal and bacterial inoculum with mixed substrate (Jatropha cake + vegetable waste) during composting (aerobic and partial anaerobic) showed, better results as compared to compost with only fungal inoculants. Increased enzymatic activity initially, during composting (like dehydrogenase, alkaline phosphatase activity and FDA) proved role of inoculated microbes in rapid decomposition. Analysis of compost (with both bacterial and fungal inoculum) showed presence of high humus (12.7%), humic acid (0.5%), fulvic acid (5.68%), soluble protein content and low C/N ratio. Decreased in concentration of extractable metals (Cu, Fe and Mn) were recorded at maturity in all the substrate composts. The C/N ratio was significantly correlated to parameters like humic acid, humus, fulvic acid, protein and also microbial activity parameters. We conclude that the composting of de-oiled Jatropha cake with different vegetables waste could be feasible and sustainable approach in recycling of agricultural and industrial residues in huge quantities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Jatropha/microbiología , Microbiología del Suelo , Suelo/química , Aerobiosis , Agricultura/métodos , Anaerobiosis , Bacterias/metabolismo , Carbono/análisis , Hongos/metabolismo , Metales/análisis , Nitrógeno/análisis
9.
J Environ Biol ; 29(5): 759-63, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19295078

RESUMEN

The dried tobacco waste was mixed in proportions of 1%, 2% and 3% in soil and filled in earthen pots of 6 kg capacity. Three replicate pots for each soil concentration were used. Tomato saplings of cultivar Bezosheetal were transplanted age of 20 days (signifying stage before flowering), 25 days (signifying stage at the start of flowering) and 45 day (signifying just at the onset of fruiting). The morphological parameters like plant height, number of leaf, flower plant(-1), number of fruits and yield plant(-1) were recorded. Nutrient parameters like moisture, total soluble solids (TSS), acidity vitamin C, reducing sugar proteins, pectin and lycopene were analyzed in tomato fruits. Experiments revealed that the yield of tomato fruit and critical nutritional parameters showed significant increase. For higher yield (183 g plant(-1)) of tomato, the best option is the use of 3% tobacco waste after 45 days of transplant. Alternatively, use of 2% tobacco waste with 45 days of transplant provides a higher quality tomato. The yield obtained here would be significantly higher than control but not as high as with 3% tobacco waste.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Fertilizantes , Solanum lycopersicum/crecimiento & desarrollo , Industria del Tabaco , Agricultura , Productos Agrícolas/química , Solanum lycopersicum/química , Valor Nutritivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA