Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Neuropathol Exp Neurol ; 80(12): 1099-1107, 2021 12 29.
Article En | MEDLINE | ID: mdl-34850053

Brain tumors are the most common solid tumor in children, and low-grade gliomas (LGGs) are the most common childhood brain tumor. Here, we report on 3 patients with LGG harboring previously unreported or rarely reported RAF fusions: FYCO1-RAF1, CTTNBP2-BRAF, and SLC44A1-BRAF. We hypothesized that these tumors would show molecular similarity to the canonical KIAA1549-BRAF fusion that is the most widely seen alteration in pilocytic astrocytoma (PA), the most common pediatric LGG variant, and that this similarity would include mitogen-activated protein kinase (MAPK) pathway activation. To test our hypothesis, we utilized immunofluorescent imaging and RNA-sequencing in normal brain, KIAA1549-BRAF-harboring tumors, and our 3 tumors with novel fusions. We performed immunofluorescent staining of ERK and phosphorylated ERK (p-ERK), identifying increased p-ERK expression in KIAA1549-BRAF fused PA and the novel fusion samples, indicative of MAPK pathway activation. Geneset enrichment analysis further confirmed upregulated downstream MAPK activation. These results suggest that MAPK activation is the oncogenic mechanism in noncanonical RAF fusion-driven LGG. Similarity in the oncogenic mechanism suggests that LGGs with noncanonical RAF fusions are likely to respond to MEK inhibitors.


Brain Neoplasms/genetics , Glioma/genetics , MAP Kinase Signaling System/physiology , Oncogene Proteins, Fusion/genetics , raf Kinases/genetics , Adolescent , Brain Neoplasms/metabolism , Child , Female , Glioma/metabolism , Humans , Male
2.
Cancers (Basel) ; 13(24)2021 Dec 07.
Article En | MEDLINE | ID: mdl-34944778

Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.

3.
FEBS J ; 288(21): 6127-6141, 2021 11.
Article En | MEDLINE | ID: mdl-33523591

Pediatric high-grade gliomas (pHGG) comprise a deadly, heterogenous category of pediatric gliomas with a clear need for more effective treatment options. Advances in high-throughput molecular techniques have enhanced molecular understanding of these tumors, but outcomes are still poor, and treatments beyond resection and radiation have not yet been clearly established as standard of care. In this review, we first discuss the history of treatment approaches to pHGG to this point. We then review four distinct categories of pHGG, including histone 3-mutant, IDH-mutant, histone 3/IDH-wildtype, and radiation-induced pHGG. We discuss the molecular understanding of each subgroup and targeted treatment options in development. Finally, we look at the development and current status of two novel approaches to pHGG as a whole: localized convection-enhanced chemotherapy delivery and immunotherapy, including checkpoint inhibitors, vaccine therapy, and CAR-T cells. Through this review, we demonstrate the potential for rational, molecularly driven, subtype-specific therapy to be used with other novel approaches in combinations that could meaningfully improve the prognosis in pHGG.


Glioma/therapy , Animals , Child , Combined Modality Therapy , Female , Glioma/pathology , Histones/metabolism , Humans , Immunotherapy/methods , Male , Prognosis
...