Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124194, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569387

RESUMEN

Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.


Asunto(s)
Antibacterianos , Transferencia Resonante de Energía de Fluorescencia , Antibacterianos/análisis , Nitrofurantoína , Colorantes/análisis , Agua , Vitaminas/análisis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123882, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38241930

RESUMEN

A hydrogen bonded ability metal organic framework (MOF, 1Zn) is used for the ultra-sensitive "turn-on" detection of hyperprolinemia biomarker with ultrafast (within 5 s) colorimetric response making the first MOF based hyperprolinemia biomarker sensor. The detection limit (4.46 ppb) is outperformed compared to all contemporary hyperprolinemia biomarker based sensors. Further, the sensor showed the recognition of biomarker in biological sample (human saliva). The detection of biomarker is also realized through colorimetric response (solution based and paper strip method). The mechanism of sensing is established through the electron transfer and the absorption caused emission (ACE). Moreover, the theoretical study is performed to support the sensing mechanism. The control titration of 1Zn suggest that the free -NH2 group of linker in 1Zn is involved in supramolecular interaction (hydrogen bonding) with the carboxylic group present on biomarker results the facile occurrence of electron transfer and ACE. Consequently, the luminescence "turn-on" effect of 1Zn for hyperprolinemia biomarker is observed.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Biomarcadores , Luminiscencia , Zinc
3.
Inorg Chem ; 63(5): 2352-2362, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38267375

RESUMEN

The exploration of smart sensors is of great significance for the selectivity, sensitivity, and ability to show the low detection limit for the target analyte. Here, we have used the linker H2L (5-((anthracen-9-ylmethyl)amino)isophthalic acid) for the construction of {[Cd(L)(DMF)(H2O)2]·H2O}n (1) which is in order with the chromophore anthracene moiety and the free -NH functionality as a guest interaction site. This framework showed the luminescence recovery "turn-on" detection of the Al3+ ion in an aqueous solution. An exhaustive mechanism study disclosed that the Lewis acid-base-type interaction between the Al3+ ion and the -NH functionality of the linker in the framework revealed that the absorbance caused an enhancement for the "turn-on" sensing event. Besides the "turn-on" sensing event, the "turn-off" sensing phenomenon of 1 is also noticed when it detects the hazardous oxo-anions (MnO4- and CrO42-) with limit of detection values of 17.08 and 19.91 ppb, respectively. The detection of these diverse analytes are very fast (10 s) and they can also be recognized through a colorimetric response. The sensing mechanisms for these analytes are established by photoinduced electron transfer, Forster resonance energy transfer, and inert filter effect along with theoretical investigation. Furthermore, to show the sensing application of 1 in a versatile podium, a MOF gel composite, 1@AA (AA = Agar-Agar), was developed from 1 with AA. Interestingly, 1@AA showed the colorimetric detection of these analytes under UV light. Therefore, sensor 1 behaves as a smart sensory material for the recognition of the above analytes through a simultaneous "turn-on" and "turn-off" effect.

4.
Dalton Trans ; 52(22): 7383-7404, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37183603

RESUMEN

Metal-organic frameworks (MOFs ) are excellent candidates for use in chemistry, material sciences and engineering thanks to their interesting qualitative features and potential applications. Quite interestingly, the luminescence of MOFs can be engineered by regulation of the ligand design, metal ion selection and encapsulation of guest molecules within the MOF cavity. Temperature is a very crucial physical parameter and the market share of temperature sensors is rapidly expanding with technology and medicinal advancement. Among the wide variety of available temperature sensors, recently MOFs have emerged as potential temperature sensors with the capacity to precisely measure the temperature. Lanthanide-based thermometry has advantages because of its ratiometric response ability, high quantum yield and photostability, and therefore lanthanide-based MOFs were initially focused on to construct MOF thermometers. As science and technology have gradually changed, it has been observed that with the inclusion of dye, quantum dots, etc. within the MOF cavity, it is possible to develop MOF-based thermometry. This review consolidates the recent advances of MOF-based ratiometric thermometers and their mechanism of energy transfer for determining the temperature (thermal sensitivity and temperature uncertainty). In addition, some fundamental points are also discussed, such as concepts for guiding the design of MOF ratiometric thermometers, thermometric performance and tuning the properties of MOF thermometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA