Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Deliv ; 19(8): 899-912, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35830722

RESUMEN

INTRODUCTION: Many small molecules and biologic therapeutics have been developed for solid tumor therapy. However, the unique physiology of tumors makes the actual delivery of these drugs into the tumor mass inefficient. Such delivery requires transport from blood vessels, across the vasculature and into and through interstitial space within a tumor. This transportation is dependent on the physiochemical properties of the therapeutic agent and the biological properties of the tumor. It was hoped the application of nanoscale drug carrier systems would solve this problem. However, issues with poor tumor accumulation and limited drug release have impeded clinical impact. In response, these carrier systems have been redesigned to be paired with targetable external mechanical stimuli which can trigger much enhanced drug release and deposition. AREAS COVERED: The pre-clinical and clinical progress of thermolabile drug carrier systems and the modalities used to trigger the release of their cargo are assessed. EXPERT OPINION: Combined application of mild hyperthermia and heat-responsive liposomal drug carriers has great potential utility. Clinical trials continue to progress this approach and serve to refine the technologies, dosing regimens and exposure parameters that will provide optimal patient benefit.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Neoplasias , Doxorrubicina , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Liposomas/química , Neoplasias/tratamiento farmacológico
2.
Biomed Pharmacother ; 149: 112707, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35303565

RESUMEN

Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.


Asunto(s)
Diabetes Mellitus , Óxido Nítrico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Humanos , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Cicatrización de Heridas
3.
J Biol Chem ; 289(38): 26249-26262, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25104354

RESUMEN

Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Mitosis , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Cromosomas Humanos/metabolismo , Células HEK293 , Células HeLa , Heterocromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Metiltransferasas/metabolismo , Transporte de Proteínas , Proteínas Represoras/metabolismo , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...