Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Biol Chem ; 298(3): 101675, 2022 03.
Article En | MEDLINE | ID: mdl-35122791

A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells. In this study, we used Luminex multiplexing assays and high-content single-cell imaging to demonstrate that EGF triggers temporal activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in Hs578T cells. Subsequently, we found that treatments with a pharmacological inhibitor of ERK1/2, SCH772984, or short-hairpin RNAs targeting ERK1/2 promote the dissociation of large-sized assemblies to medium-sized assemblies in Hs578T cells. In addition, our Western blot analyses revealed that EGF treatment does not increase the expression levels of enzymes that are involved in both glucose metabolism and serine biosynthesis. The observed spatial transition of glucosome assemblies between large and medium sizes appears to be mediated by the degree of dynamic partitioning of glucosome enzymes without changing their expression levels. Collectively, our study demonstrates that EGF-ERK1/2 signaling pathways play an important role in the upregulation of large-sized glucosomes in cancer cells, thus functionally governing the promotion of glycolysis-derived serine biosynthesis.


Epidermal Growth Factor , Glucose , MAP Kinase Signaling System , Multienzyme Complexes , Epidermal Growth Factor/metabolism , Glucose/metabolism , Humans , Multienzyme Complexes/metabolism , Phosphorylation , Serine/metabolism , Subcellular Fractions/metabolism
2.
J Cell Biochem ; 122(2): 189-197, 2021 02.
Article En | MEDLINE | ID: mdl-32786121

The stability and activity of the p53 tumor suppressor protein are tightly regulated by various posttranslational modifications, including SUMOylation. p53 can be modified by both SUMO1 and SUMO2, although how SUMOylation regulates p53 activity is still obscure. Whether p53 activity is directly regulated by deSUMOylation is also unclear. Here, we show that SENP1, a SUMO-specific protease implicated in pro-oncogenic roles, is a p53 deSUMOylating enzyme. SENP1 interacts with p53 and deSUMOylates p53 in cells and in vitro. Knockdown of SENP1 markedly induced p53 transactivation activity. We further show that SENP1 depletion synergizes with DNA damage-inducing agent etoposide to induce p53 activation and the expression of p21, leading to synergistic growth inhibition of cancer cells. Our results reveal that SENP1 is a critical p53 deSUMOylating enzyme and a promising therapeutic target in wild-type p53 containing cancer cells.


Cysteine Endopeptidases/metabolism , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Cysteine Endopeptidases/genetics , DNA Damage/drug effects , DNA Damage/genetics , Etoposide/pharmacology , Humans , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Tumor Suppressor Protein p53/genetics
3.
Mol Cell Oncol ; 3(2): e1125986, 2016 Mar.
Article En | MEDLINE | ID: mdl-27308622

MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic domain, zinc finger domain, and the RING domain. Unexpectedly, we observed that individual mutations in several of these domains compromised the ability of MDM2 to degrade p53. Mutations in the N-terminal p53 binding domain prevented the formation of a p53-MDM2 complex, thereby protecting p53 from degradation. Additionally, as would be predicted, several cancer-associated mutations in the RING finger domain disrupted the ubiquitin ligase activity of MDM2 and prevented p53 degradation. Interestingly, we observed that amino acid substitutions at the same codon differentially affected MDM2 activity. Our data reveal that mutations in this oncogene can have the paradoxical effect of suppressing its activity. Further understanding of how these mutations perturb MDM2 function may yield novel approaches to inhibiting its activity.

4.
Oncotarget ; 7(11): 12554-67, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26871468

Mutations in the tumor suppressor gene TP53 contribute to the development of approximately half of all human cancers. One mechanism by which mutant p53 (mtp53) acts is through interaction with other transcription factors, which can either enhance or repress the transcription of their target genes. Mtp53 preferentially interacts with the erythroblastosis virus E26 oncogene homologue 2 (ETS2), an ETS transcription factor, and increases its protein stability. To study the mechanism underlying ETS2 degradation, we knocked down ubiquitin ligases known to interact with ETS2. We observed that knockdown of the constitutive photomorphogenesis protein 1 (COP1) and its binding partner De-etiolated 1 (DET1) significantly increased ETS2 stability, and conversely, their ectopic expression led to increased ETS2 ubiquitination and degradation. Surprisingly, we observed that DET1 binds to ETS2 independently of COP1, and we demonstrated that mutation of multiple sites required for ETS2 degradation abrogated the interaction between DET1 and ETS2. Furthermore, we demonstrate that mtp53 prevents the COP1/DET1 complex from ubiquitinating ETS2 and thereby marking it for destruction. Mechanistically, we show that mtp53 destabilizes DET1 and also disrupts the DET1/ETS2 complex thereby preventing ETS2 degradation. Our study reveals a hitherto unknown function in which DET1 mediates the interaction with the substrates of its cognate ubiquitin ligase complex and provides an explanation for the ability of mtp53 to protect ETS2.


Carrier Proteins/metabolism , Mutation , Proto-Oncogene Protein c-ets-2/genetics , Proto-Oncogene Protein c-ets-2/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Carrier Proteins/genetics , Gene Knockdown Techniques , Genes, p53 , Humans , Transfection , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics
5.
Nat Commun ; 6: 7389, 2015 Jun 12.
Article En | MEDLINE | ID: mdl-26067754

Mutant p53 (mtp53) is an oncogene that drives cancer cell proliferation. Here we report that mtp53 associates with the promoters of numerous nucleotide metabolism genes (NMG). Mtp53 knockdown reduces NMG expression and substantially depletes nucleotide pools, which attenuates GTP-dependent protein activity and cell invasion. Addition of exogenous guanosine or GTP restores the invasiveness of mtp53 knockdown cells, suggesting that mtp53 promotes invasion by increasing GTP. In addition, mtp53 creates a dependency on the nucleoside salvage pathway enzyme deoxycytidine kinase for the maintenance of a proper balance in dNTP pools required for proliferation. These data indicate that mtp53-harbouring cells have acquired a synthetic sick or lethal phenotype relationship with the nucleoside salvage pathway. Finally, elevated expression of NMG correlates with mutant p53 status and poor prognosis in breast cancer patients. Thus, mtp53's control of nucleotide biosynthesis has both a driving and sustaining role in cancer development.


Brain Neoplasms/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Nucleotides/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Blotting, Western , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation/genetics , Deoxycytidine Kinase , Female , Gene Knockdown Techniques , Guanosine Triphosphate , Humans , Immunoprecipitation , Kaplan-Meier Estimate , Mice , Mutation , Neoplasm Invasiveness/genetics , Neoplasm Transplantation , Nucleosides/metabolism , Prognosis , Promoter Regions, Genetic , Proportional Hazards Models , Tumor Stem Cell Assay , Tumor Suppressor Protein p53/metabolism
...