Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929375

RESUMEN

Betaine improves growth performance and health in monogastric animals under both thermoneutral and heat stress conditions, but results in ruminants have been more equivocal. This meta-analysis investigated the effects of betaine supplementation on productive performance, milk production and composition, and carcass traits of ruminants due to betaine supplementation. A comprehensive search for published studies investigating the effect of betaine was performed using Google Scholar, ScienceDirect, PubMed, and Scopus databases. Effect size analysis, random effects models, I2 statistics, and meta-regression analysis were utilized to assess differences in production parameters. Dietary betaine supplementation increased milk yield (+1.0 kg/d (weighted mean differences presented in this abstract), p < 0.001), dry matter intake (+0.15 kg/d, p < 0.001), and milk lactose (+0.05%, p = 0.010) in dairy cows housed under thermoneutral conditions. In the few studies conducted on small ruminants, there was an increase in milk yield in response to dietary betaine (0.45 kg/d, p = 0.040). Under heat stress conditions or grazing pasture during summer, dietary betaine increased milk yield (+1.0 kg/d, p < 0.001) and dry matter intake (+0.21 kg/d, p = 0.020). Dietary betaine increased final liveweight (+2.33 kg, p = 0.050) and back fat thickness (+0.74 cm, p < 0.001) in beef cattle. Dietary betaine increased final liveweight (0.14 kg, p = 0.010), daily gain (+0.019 kg/d, p < 0.001), and carcass weight (+0.80 kg, p < 0.001) but not backfat in small ruminants. These meta-analyses showed that dietary betaine increases liveweight in small ruminants and beef cattle and increases feed intake and milk yield in dairy cattle.

2.
Animals (Basel) ; 14(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540003

RESUMEN

The objective of this study was to evaluate the effects of feeding sugarcane-derived polyphenolic supplement (Polygain, The Product Makers Australia, Keysborough, VIC, Australia) on enteric methane (CH4) emission, rumen microbiota, and performance of second-cross lambs. For this purpose, 24 Poll Dorset × (Border Leicester × Merino) lambs were allocated to 3 different treatments: Control (C), 0.25% Polygain (0.25 PG), and 1% Polygain (1 PG) diets with a uniform basal feed (25% cracked wheat grain, 25% cracked barley grain, 25% oaten chaff, 25% lucerne chaff). Both doses of Polygain reduced the total CH4 production (g/day; p = 0.006), CH4 yield (CH4, g/kg of dry matter intake; p = 0.003) and CH4 intensity (CH4, g/kg of BW; p = 0.003). Dry matter intake tended to be greater (p = 0.08) in sheep fed 1 PG compared to the C group, with the 0.25 PG group being intermediate. The average daily gain of the lambs was improved (p = 0.03) with 1% Polygain supplementation. The relative abundance of genera Methanobrevibacter_unidentified, Methanomethylophilaceae_uncultured, Methanogenic archaeon mixed culture ISO4-G1, Methanosphaera uncultured rumen methanogen, Methanogenic archaeon ISO4-H5, and Methanobrevibacter boviskoreani JH1 were reduced with Polygain supplementation. In conclusion, feeding Polygain reduced lambs' enteric CH4 emissions, altered the rumen microbiome, and improved the growth performance of lambs.

4.
Animals (Basel) ; 13(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37508037

RESUMEN

Dairy cattle predicted by genomic breeding values to be heat tolerant are known to have less milk production decline and lower core body temperature increases in response to elevated temperatures. In a study conducted at the University of Melbourne's Dookie Robotic Dairy Farm during summer, we identified the 20 most heat-susceptible and heat-tolerant cows in a herd of 150 Holstein Friesian lactating cows based on their phenotypic responses (changes in respiration rate, surface body temperature, panting score, and milk production). Hair samples were collected from the tip of the cows' tails following standard genotyping protocols. The results indicated variation in feed saved and HT genomic estimated breeding values (GEBVs) (p ≤ 0.05) across age, indicating a potential for their selection. As expected, the thermotolerant group had higher GEBVs for HT and feed saved but lower values for milk production. In general, younger cows had superior GEBVs for the Balanced Performance Index (BPI) and Australian Selection Index (ASI), whilst older cows were superior in fertility, feed saved (FS), and HT. This study demonstrated highly significant (p ≤ 0.001) negative correlations (-0.28 to -0.74) between HT and GEBVs for current Australian dairy cattle selection indices (BPI, ASI, HWI) and significant (p ≤ 0.05) positive correlations between HT and GEBVs for traits like FS (0.45) and fertility (0.25). Genomic selection for HT will help improve cow efficiency and sustainability of dairy production under hot summer conditions. However, a more extensive study involving more lactating cows across multiple farms is recommended to confirm the associations between the phenotypic predictors of HT and GEBVs.

5.
Foods ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297460

RESUMEN

This meta-regression analysis was conducted to identify the relationship between fibretype cross-sectional area (CSA) and frequency (%) and meat quality traits, especially tenderness (sensory and Warner-Bratzler Shear Force, WBSF). Literature searches were conducted using specific keywords which resulted in 32 peer-reviewed manuscripts that contained averages and correlation coefficients for fibre type (frequency and CSA) and quality traits of longissimus muscle for beef and pork (7 and 25 studies respectively). Correlations were analysed in meta-regression using R-Studio and linear regression was also conducted. For the combined beef and pork analysis, only pH, WBSF, and drip loss were associated with fibre type frequency and CSA (p < 0.05 for all). Limiting the analysis to pork, the key results were frequency of type I fibres were associated with decreased drip loss, increased cook loss, decreased lightness (L*) and increased sensory tenderness whereas frequency of type IIb fibres were associated with increased drip loss (p < 0.05 for all). In addition, the CSA of type I and IIb fibres was associated with colour traits lightness and redness (p < 0.05 for all). Future research should focus on fibre type across breeds and muscles to further understand the impacts of fibre type frequency and CSA on quality.

6.
Animals (Basel) ; 12(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35681860

RESUMEN

The objective of this study was to investigate the effects of reducing the fermentability of grains on thermoregulatory responses in heat stressed (HS) lambs. To achieve this, wheat grain treated with a commercial starch binding agent, Bioprotect, is compared to maize, which has already demonstrated effects in ameliorating heat stress-induced thermoregulation responses and untreated wheat grains. An initial in vitro experiment was conducted to examine cumulative gas production from the fermentation of wheat grain with different dosages of the commercial starch binding agent, Bioprotect. Based on the in vitro results, an in vivo lamb experiment was conducted using 24 Merino lambs (1 year old; 42.6 ± 3.6 kg BW). The lambs were offered one of three dietary treatments: a wheat-based diet (WD), a Bioprotect treated wheat-based diet (BD), and a maize-based diet (MD). Three successive 1-week experimental periods were conducted with lambs from all dietary groups (P1, P2, and P3). During P1, lambs were exposed to a TN environment and fed a 1.7× Maintenance feed intake (MF) level; in P2, lambs were kept in a HS environment and fed a 1.7× MF level; and in P3, animals were kept in a HS environment and fed a 2× MF level. The in vitro experiment revealed a reduction in cumulative gas production (p < 0.05) from the Bioprotect treated wheat compared to untreated wheat samples. In the in vivo component of the study, the replacement of wheat with maize or 2% Bioprotect-treated wheat reduced the respiration rate (p < 0.001) and heart rate (p ≤ 0.01) of lambs during HS. There was a reduction in the concentration of blood gas variables such as a base excess of blood (BE(b)) and extracellular fluid (BE(ecf)), bicarbonate (CHCO3−), the partial pressure of carbon dioxide (pCO2), the total concentration of carbon dioxide (ctCO2), and sodium (Na+) (p ≤ 0.001 for all) during the periods of HS compared to the thermoneutral conditions. Moreover, BD- and MD-fed lambs had a higher blood potassium concentration (K+) than the WD-fed lambs (p = 0.008). The results of the present study suggest that Bioprotect can be a viable feed treatment strategy for treating rapidly fermentable grains such as wheat to alleviate the effects of HS. Further, Bioprotect-treated wheat could be an option to replace maize in concentrate rations in jurisdictions where maize is cost-prohibitive or unavailable.

7.
Animals (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35158548

RESUMEN

A 39-day field experiment was conducted to assess the effect of grape marc (GM) feeding on sheep productivity, health, and environmental sustainability. Forty merino sheep were divided into two dietary groups, each having five replications (n = 4 sheep/replication). Experimental diet consisted of: (i) control: 55% lucerne hay + 40% wheat grain + 5% faba bean; (ii) GM treatment: control diet with 20% replaced by GM on a dry matter (DM) basis. The GM treatment contained 2-10% higher phytochemical contents than the control. The DMI from the GM treatment was 15% higher than the control (p < 0.001). No difference was found in sheep live weight gain, behaviour, and quality between groups (p > 0.05). No difference was found in total faecal production, faecal organic matter, and nitrogen contents (p > 0.05) and parasitic egg count. The GM treatment led to higher nitrogen intake (23.1 vs. 27.2 g/d) and faecal nitrogen excretion (6.3 vs. 8.7 g/d) compared to the control. Urinary creatinine, allantoin, and purine derivatives were lower in the GM treatment than control (p < 0.05). However, both groups had similar purine derivatives/DMI (i.e., indicator of rumen microbial protein synthesis efficiency; p > 0.05). Overall, the results showed that GM can replace 20% of the control ration to maintain sheep productivity, health, and environmental sustainability.

8.
Foods ; 11(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35159563

RESUMEN

The experiment investigated the impact of heatwaves (HWs) on the physiology, postmortem muscle metabolism and meat quality of lambs. Seventy-two second-cross lambs (Poll Dorset × (Border Leicester × Merino)) were selected and exposed to either 1, 3 or 5 days of HWs or thermoneutal (TN) (28-38 °C and 40-60% relative humidity, RH; 18-21 °C, 40-55% RH) conditions in climate-controlled chambers. Lambs exposed to 1-5 days of a HW exhibited higher respiration rates (RRs), rectal temperatures (RTs), skin temperatures (STs) and heart rates (HRs) compared to lambs exposed to an equal duration of TN conditions. However, HWs had no significant effects on muscle metabolism (rate and extent of pH decline, muscle glycogen and lactate content) and meat quality (cooking loss and shear force). Similarly, there were limited impacts of 1-5 days of HW on the colour (L*, a*, b* and R630/580) and drip loss of the longissimus thoracis et lumborum (LTL) and semimembranosus (SM) muscles for 4 days' overwrap retail display. Results suggest that short-duration HWs (1-5 days) had significant negative effects on animal physiology but had no effect on the muscle metabolism and meat quality.

9.
Meat Sci ; 181: 108581, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34098379

RESUMEN

The present study investigated the impact of heat stress and genetics on lamb growth performance and meat quality. Forty-eight Dorper and 2nd cross [Poll Dorset × (Border Leicester × Merino)] lambs (38--42 kg; 4-5 months old) were allocated to either thermoneutral [TN; 18-21 °C, 45-55% relative humidity (RH)], or heat stress (HS; 28 °C-38 °C, 40-60% RH) conditions in a 2 × 2 factorial design for 2 weeks. Compared with 2nd cross, Dorper lambs had a lower respiration rate (RR) and rectal temperature (RT), and exhibited less decline in body weight under HS. 2nd cross lambs showed a higher body weight gain than Dorpers under TN conditions. HS increased a* and chroma of the Longissimus thoracis et lumborum (LTL) from 2nd cross lambs over 10 days of display, but had no impact on Dorper LTL. In conclusion, Dorpers showed higher heat tolerance compared with 2nd cross lambs during the 2 weeks HS.


Asunto(s)
Trastornos de Estrés por Calor/veterinaria , Carne Roja/análisis , Enfermedades de las Ovejas/fisiopatología , Oveja Doméstica/crecimiento & desarrollo , Animales , Temperatura Corporal , Color , Trastornos de Estrés por Calor/genética , Trastornos de Estrés por Calor/fisiopatología , Músculo Esquelético , Frecuencia Respiratoria , Ovinos , Enfermedades de las Ovejas/genética , Oveja Doméstica/genética , Aumento de Peso
10.
Animals (Basel) ; 11(4)2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33916619

RESUMEN

This review attempted to collate and synthesize information on goat welfare and production constraints during heat stress exposure. Among the farm animals, goats arguably are considered the best-suited animals to survive in tropical climates. Heat stress was found to negatively influence growth, milk and meat production and compromised the immune response, thereby significantly reducing goats' welfare under extensive conditions and transportation. Although considered extremely adapted to tropical climates, their production can be compromised to cope with heat stress. Therefore, information on goat adaptation and production performance during heat exposure could help assess their welfare. Such information would be valuable as the farming communities are often struggling in their efforts to assess animal welfare, especially in tropical regions. Broadly three aspects must be considered to ensure appropriate welfare in goats, and these include (i) housing and environment; (ii) breeding and genetics and (iii) handling and transport. Apart from these, there are a few other negative welfare factors in goat rearing, which differ across the production system being followed. Such negative practices are predominant in extensive systems and include nutritional stress, limited supply of good quality water, climatic extremes, parasitic infestation and lameness, culminating in low production, reproduction and high mortality rates. Broadly two types of methodologies are available to assess welfare in goats in these systems: (i) animal-based measures include behavioral measurements, health and production records and disease symptoms; (ii) resources based and management-based measures include stocking density, manpower, housing conditions and health plans. Goat welfare could be assessed based on several indicators covering behavioral, physical, physiological and productive responses. The important indicators of goat welfare include agonistic behavior, vocalization, skin temperature, body condition score (BCS), hair coat conditions, rectal temperature, respiration rate, heart rate, sweating, reduced growth, reduced milk production and reduced reproductive efficiency. There are also different approaches available by which the welfare of goats could be assessed, such as naturalistic, functional and subjective approaches. Thus, assessing welfare in goats at every production stage is a prerequisite for ensuring appropriate production in this all-important species to guarantee optimum returns to the marginal and subsistence farmers.

11.
Meat Sci ; 175: 108466, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33610088

RESUMEN

This study investigated the effects of age of animal and days post-mortem (PM) on meat quality of Boer goats. Twenty-four (24) wether Boer goats of two age groups (2YO group: 2 years old and 9MO: 6-9 months, with 12 animals/group) were slaughtered in a commercial processing plant. The pH@Temp18 was estimated to be above 6 in both age groups with higher (P < 0.01) values in 2YO goats. The PM storage for 14 days reduced the shear force in both age groups (P < 0.01). 2YO goat muscles (longissimus and semimembranosus) exhibited higher (P < 0.01) Thiobarbituric acid reactive substance values (TBARS), indicating increased lipid oxidation. Glycogen (P < 0.01) and lactate content (20 min post-slaughter) in longissimus of 9MO were lower compared to 2YO, and total muscle glycogen concentration was lower (P < 0.01) in both age groups below the threshold levels. Hence, as hypothesized, age and days PM proved to play crucial roles on Boer meat quality.


Asunto(s)
Factores de Edad , Músculo Esquelético/química , Carne Roja/análisis , Animales , Calidad de los Alimentos , Glucógeno/análisis , Cabras/fisiología , Ácido Láctico/análisis , Masculino , Resistencia al Corte , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
12.
Int J Biometeorol ; 65(7): 1231-1244, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33496873

RESUMEN

Heat stress is one of the greatest challenges for the global livestock industries as increased environmental temperature and humidity compromises animal production during summer leading to devastating economic consequences. Over the last 30 years, significant developments have been achieved in cooling and provision of shade and shelter to mitigate heat stress reducing some of the losses associated with heat stress in farm animals. However, the recent increase in the incidence of heat waves which are also becoming more severe and lasting longer, due to climate change, further accentuates the problem of heat stress. Economic losses associated with heat stress are both direct due to loss in production and animal life, and indirect due to poorer quality products as a result of poor animal health and welfare. Animal health is affected due to impaired immune responses and increased reactive oxygen species production and/or deficiency of antioxidants during heat stress leading to an imbalance between oxidant and antioxidants and resultant oxidative stress. Research over the last 20 years has achieved partial success in understanding the intricacies of heat stress impacts on oxidative stress and immune responses and developing interventions to ameliorate impacts of heat stress, improving immune responses and farm animal health. This paper reviews the body of knowledge on heat stress impacts on immune response in farm animals. The impacts of heat stress on both cell-mediated and humoral immune responses have been discussed identifying the shift in immune response from cell-mediated towards humoral response, thereby weakening the immune status of the animal. Both species and breed differences have been identified as influencing how heat stress impacts the immune status of farm animals. In addition, crosstalk signaling between the immune system and oxidative stress has been considered and the role of antioxidants as potential nutritional strategies to mitigate heat stress has been discussed.


Asunto(s)
Animales Domésticos , Trastornos de Estrés por Calor , Animales , Trastornos de Estrés por Calor/prevención & control , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Calor , Inmunidad , Estrés Oxidativo
13.
Meat Sci ; 172: 108332, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33038798

RESUMEN

Phosphofructokinase-1 (PFK-1) is the most important enzyme controlling postmortem glycolysis in living skeletal muscle and is the most likely candidate for regulation of postmortem glycolysis. We investigated the regulation of PFK-1 activity by F-2, 6-BP and AMP under simulated postmortem conditions in porcine skeletal muscle. Six pigs were harvested and longissimus lumborum samples were collected immediately post-slaughter. PFK-1 activity was assayed using increasing concentrations of F-2, 6-BP or AMP, added to the buffer adjusted to different pH. Both F-2, 6-BP and AMP increased PFK-1 activity with increasing buffer pH from 5.5 to 7.0. A concentration of 50 µM F-2, 6-BP was required to increase PFK-1 activity which is very high compared to physiological concentration in the porcine skeletal muscle. However, physiological concentrations (50-150 µM) of AMP resulted in increased PFK-1 activity compared to 1-2 µM F-2, 6-BP. Thus, AMP may play a greater role in dictating the rate and extent of postmortem muscle glycolysis and pH decline as compared to F-2, 6-BP.


Asunto(s)
Adenosina Monofosfato/metabolismo , Fructosadifosfatos/metabolismo , Músculo Esquelético/enzimología , Fosfofructoquinasa-1/metabolismo , Animales , Activación Enzimática , Glucólisis , Concentración de Iones de Hidrógeno , Carne de Cerdo/análisis , Porcinos
14.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171995

RESUMEN

Live sheep export has become a public concern. This study aimed to test a non-contact biometric system based on artificial intelligence to assess heat stress of sheep to be potentially used as automated animal welfare assessment in farms and while in transport. Skin temperature (°C) from head features were extracted from infrared thermal videos (IRTV) using automated tracking algorithms. Two parameter engineering procedures from RGB videos were performed to assess Heart Rate (HR) in beats per minute (BPM) and respiration rate (RR) in breaths per minute (BrPM): (i) using changes in luminosity of the green (G) channel and (ii) changes in the green to red (a) from the CIELAB color scale. A supervised machine learning (ML) classification model was developed using raw RR parameters as inputs to classify cutoff frequencies for low, medium, and high respiration rate (Model 1). A supervised ML regression model was developed using raw HR and RR parameters from Model 1 (Model 2). Results showed that Models 1 and 2 were highly accurate in the estimation of RR frequency level with 96% overall accuracy (Model 1), and HR and RR with R = 0.94 and slope = 0.76 (Model 2) without statistical signs of overfitting.


Asunto(s)
Inteligencia Artificial , Frecuencia Respiratoria , Algoritmos , Animales , Computadores , Aprendizaje Automático , Ovinos
15.
Foods ; 9(11)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147731

RESUMEN

The current study is a meta-analysis of the effects of electrical stimulation (ES, n = 28 papers) with different voltages combined with different ageing periods (0-3, 4-7, and 8-14 days) on the meat quality of small ruminants. A comprehensive search for published studies on meat quality of small ruminants investigating the application of low, medium, and high voltage electrical stimulation, was performed using Google Scholar, ScienceDirect, PubMed, and Scopus databases. Forest plots, funnel plots, and other statistical tools and tests were used in the study to analyze the results. Electrical stimulation significantly reduced ultimate pH (p < 0.001), Warner-Bratzler shear force (WBSF) (p < 0.001), cooking loss (p < 0.05), and purge loss (p < 0.001). In addition, sarcomere length (p < 0.01), myofibrillar-fragmentation index (MFI) (p < 0.001), and color (L*, a*, b*) (p < 0.001) showed higher values in meat subjected to ES as compared with the control group. In conclusion, the meta-analysis revealed statistical proof of beneficial effects of ES on meat quality of small ruminants in terms of ultimate pH, tenderness, enhanced proteolysis, and higher colorimetric values.

16.
Animals (Basel) ; 10(8)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731563

RESUMEN

The impact of antioxidant supplementation and short-term heat stress on lamb body weight gain, meat nutritional profile and functionality (storage stability of lipids and colour) of lamb meat was investigated. A total of 48 crossbred ((Merino × Border Leicester) × Dorset) lambs (42 ± 2 kg body weight, 7 mo age) were randomly allocated to three dietary treatments (n = 16) by liveweight (LW) that differed in dosage of vitamin E and selenium (Se) in the diet. Vitamin E and Se levels in the control (CON), moderate (MOD) and supranutritional (SUP) dietary treatments were 28, 130 and 228 mg/kg DM as α-tocopherol acetate and 0.16, 0.66 and 1.16 mg Se as SelPlex™/kg DM, respectively. After four weeks of feeding in individual pens, including one week of adaptation, lambs were exposed to two heat treatments. Animals were moved to metabolism cages for one week and subjected to heat treatments: thermoneutral (TN; 18-21 °C and 40-50% relative humidity) and heat stress (HS; 28-40 °C and 30-40% relative humidity) conditions, respectively. Final LW and hot carcass weight were influenced by dietary treatments with higher final live weight (FLW) (p = 0.05; 46.8 vs. 44.4 and 43.8 kg, respectively) and hot carcass weight (HCW) (p = 0.01; 22.5 vs. 21.3 and 21.0 kg, respectively) recorded in lambs fed the SUP as opposed to the CON and MOD diets. Vitamin E concentration in the longissimus lumborum (LL) muscle tended to be higher in lambs fed MOD or SUP diets than the CON group. Lipid oxidation of aged meat at 72 h of simulated retail display was reduced by antioxidant supplementation. Short-term (one week) heat stress treatment significantly increased muscle linoleic acid and total omega-6 concentrations compared with the CON group. The results demonstrate that four-week antioxidant supplementation at the SUP level improved animal productivity by increasing LW and carcass weight and the functionality of meat exhibited by reduced lipid oxidation. An increase in muscle omega-6 fatty acid concentration from short-term heat stress may induce oxidative stress via proinflammatory action.

17.
Animals (Basel) ; 10(5)2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32429527

RESUMEN

Climate change is a major global threat to the sustainability of livestock systems. Climatic factors such as ambient temperature, relative humidity, direct and indirect solar radiation and wind speed influence feed and water availability, fodder quality and disease occurrence, with production being most efficient in optimal environmental conditions. Among these climatic variables, ambient temperature fluctuations have the most impact on livestock production and animal welfare. Continuous exposure of the animals to heat stress compromises growth, milk and meat production and reproduction. The capacity of an animal to mitigate effects of increased environmental temperature, without progressing into stress response, differs within and between species. Comparatively, small ruminants are better adapted to hot environments than large ruminants and have better ability to survive, produce and reproduce in harsh climatic regions. Nevertheless, the physiological and behavioral changes in response to hot environments affect small ruminant production. It has been found that tropical breeds are more adaptive to hot climates than high-producing temperate breeds. The growing body of knowledge on the negative impact of heat stress on small ruminant production and welfare will assist in the development of suitable strategies to mitigate heat stress. Selection of thermotolerant breeds, through identification of genetic traits for adaption to extreme environmental conditions (high temperature, feed scarcity, water scarcity), is a viable strategy to combat climate change and minimize the impact on small ruminant production and welfare. This review highlights such adaption within and among different breeds of small ruminants challenged by heat stress.

18.
Animals (Basel) ; 10(5)2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32429603

RESUMEN

The objective of this study was to measure the impacts of summer heat events on physiological parameters (body temperature, respiratory rate and panting scores), grazing behaviour and production parameters of lactating Holstein Friesian cows managed on an Automated Robotic Dairy during Australian summer. The severity of heat stress was measured using Temperature-Humidity Index (THI) and impacts of different THIs-low (≤72), moderate (73-82) and high (≥83)-on physiological responses and production performance were measured. There was a highly significant (p ≤ 0.01) effect of THI on respiratory rate (66.7, 84.7 and 109.1/min), panting scores (1.4, 1.9 and 2.3) and average body temperature of cows (38.4, 39.4 and 41.5 °C), which increased as THI increased from low to moderate to high over the summer. Average milk production parameters were also significantly (p ≤ 0.01) affected by THI, such that daily milk production dropped by 14% from low to high THI, milk temperature and fat% increased by 3%, whilst protein% increased by 2%. The lactation stage of cow had no significant effect on physiological parameters but affected (p ≤ 0.05) average daily milk yield and milk solids. Highly significant (p ≤ 0.01) positive correlations were obtained between THI and milk temperature, fat% and protein% whilst the reverse was observed between THI and milk yield, feed intake and rumination time. Under moderate and high THI, most cows sought shade, spent more time around watering points and showed signs of distress (excessive salivation and open mouth panting). In view of the expected future increase in the frequency and severity of heat events, additional strategies including selection and breeding for thermotolerance and dietary interventions to improve resilience of cows need to be pursued.

19.
Int J Biometeorol ; 64(9): 1613-1628, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32377930

RESUMEN

During the summer, high ambient temperature and humidity cause economic loss to the global livestock industry via reduced livestock productivity and increased mortality. The problem of heat stress (HS) is likely to be exacerbated by global warming and climate change. Recent research has shown that HS not only leads to physiological and metabolic perturbations in live animals but can also affect carcass and meat quality characteristics plausibly by altering the rate and extent of postmortem muscle glycolysis and resultant pH. However, these impacts of HS are not consistent across species. Higher incidence of pale soft and exudative (PSE) meat has been reported in poultry. On the contrary, higher incidence of high ultimate pH and dark firm and dry (DFD) meat or no impacts of HS have been reported in sheep and cattle. With the limited data on HS impacts on meat quality of ruminants, it is difficult to explain the exact mechanisms driving these variable impacts. However, it is hypothesized that the severity and duration of HS may lead to variable impacts due to lack of opportunity to adapdate to acute heat exposure. Longer HS exposure may allow ruminants to adapdate to heat and may not record any negative impacts on meat quality. This paper reviews the recent research on impacts of HS on meat quality characteristics and identify the key areas of further research required to better understand these negative impacts to develop strategies for amelioration. In addition, some mitigation strategies of HS have also been discussed which include both managemental and nutritional interventions.


Asunto(s)
Trastornos de Estrés por Calor , Animales , Bovinos , Respuesta al Choque Térmico , Calor , Ganado , Carne/análisis , Ovinos
20.
Sensors (Basel) ; 20(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456339

RESUMEN

Increased global temperatures and climatic anomalies, such as heatwaves, as a product of climate change, are impacting the heat stress levels of farm animals. These impacts could have detrimental effects on the milk quality and productivity of dairy cows. This research used four years of data from a robotic dairy farm from 36 cows with similar heat tolerance (Model 1), and all 312 cows from the farm (Model 2). These data consisted of programmed concentrate feed and weight combined with weather parameters to develop supervised machine learning fitting models to predict milk yield, fat and protein content, and actual cow concentrate feed intake. Results showed highly accurate models, which were developed for cows with a similar genetic heat tolerance (Model 1: n = 116, 456; R = 0.87; slope = 0.76) and for all cows (Model 2: n = 665, 836; R = 0.86; slope = 0.74). Furthermore, an artificial intelligence (AI) system was proposed to increase or maintain a targeted level of milk quality by reducing heat stress that could be applied to a conventional dairy farm with minimal technology addition.


Asunto(s)
Inteligencia Artificial , Industria Lechera , Leche/química , Robótica , Animales , Bovinos , Granjas , Femenino , Calor , Lactancia , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA