Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(9): 4081-4092, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35427216

RESUMEN

CYP2A6 is a very important enzyme that plays a crucial role in nicotine compounds and is responsible for the metabolism of more than 3% drugs of total metabolized drugs by the CYP family and reported as one of very important pharmacogenes. CYP2A6 is highly polymorphic in nature and reported with more than 40 variants, most of these variants are SNPs originated and population specific. It has been well observed and reported that the presence of these population-specific non-synonymous SNPs in CYP2A6 alters the rate of drug metabolism and as a functional consequence, drugs produce an abnormal response. Though genomics and pharmacogenomics studies are there, very less is known about the structural effects of these SNPs on molecular-interaction and folding of CYP2A6. To fill the knowledge gap, SNPs based four variants, i.e., CYP2A6*2, CYP2A6*18, CYP2A6*21, and CYP2A6*35, which are frequently reported in the South Asian population, were considered for the study. Coumarin (DB04665), a well reported drug, is considered as a model substance, and the effect of all four variants on 'CYP2A6*-coumarin' complex was studied. MD simulation-based analysis (at 200 ns) was performed and comparative analysis with respect to wild type 'CYP2A6-coumarin' complex was done. Though observation didn't find any global effect on complete complex but found some crucial minor-local alteration in interaction and folding process. It is assumed that the change due to SNPs in the single amino acid did not bring global change in physiochemical properties of CYP2A6* but caused local-trivial changes which are very crucial for its metabolic activity.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Citocromo P-450 CYP2A6 , Oxigenasas de Función Mixta , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/metabolismo , Cumarinas , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Simulación de Dinámica Molecular , Nicotina/metabolismo
2.
J Biomol Struct Dyn ; 40(14): 6255-6271, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33525976

RESUMEN

Salmonella is a widely distributed pathogen causing infection of intestinal tract, typhoid, and paratyphoid fever. Number of drugs was developed against salmonella, but in the last few decades due to the emergence of drug resistant strains, most of these drugs became dormant. As a result Salmonellosis emerges as a trivial cause of human mortality worldwide; therefore, there is an urgent need for unexploited drug targets and drugs to treat Salmonellosis. As development of new drug molecules is very time consuming and costly, drug repurposing is in consideration as a better alternative. With the aim to identify a new drug molecule against the Salmonella through repurposing approach, we utilized 14 well reported druggable targets known to play a vital role in the life cycle of pathogens. These targets were used to screen DrugBank and got 53 FDA approved drugs against them. To find the interaction between considered target proteins and screened drugs, molecular docking was performed. Fourteen docked drug-target complexes with reasonable binding affinities were subjected to Molecular Dynamics Simulation (MDS) at 150 ns, using Amber18. At the end MMPBSA and MMGBSA calculations were performed for all stable complexes and finally, got 3 precise and favourable complexes, i.e. ArcB-Cefpiramide, MrcB-Cefoperazone, and PhoQ-Carindacillin. Rigorous structural and energetic analysis for these complexes validates the potential of drug molecules to act as therapeutic drugs against Salmonella enterica. With this study we hypothesize that the drugs Cefpiramide (DB00430), Cefoperazone (DB01329) and Carindacillin (DB09319) will be the good repurposed-drugs for the treatment of Salmonellosis. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Cefoperazona/metabolismo , Cefoperazona/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Infecciones por Salmonella/tratamiento farmacológico , Salmonella enterica/metabolismo
3.
J Biomol Struct Dyn ; 39(17): 6617-6632, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32715956

RESUMEN

The coronavirus disease-2019 caused by a novel SARS CoV-2 virus has emerged as a global threat. Still, no drugs are available for its treatment. The main protease is the most conserved structure responsible for the posttranslational processing of non-structural polyproteins of this virus. Therefore, it can be the potential target for drug discovery against SARS CoV-2. Twenty-one thousand two hundred and seven chemical compounds used for sequential virtual screening studies including coronavirus screening compounds (Life Chemical database) and antiviral compounds (Asinex database). The Schrodinger suite 2019 employed for high throughput screening, molecular docking and MM-GBSA through the Glide module. Subsequently, 23 compounds were selected in the phase first selection criteria for re-docking with AutoDock and iDock followed by ADMET prediction. The drug-likeness predicted through Lipinski's rule of five, Veber's rule and Muegge's rule. Finally, three ligands were selected for molecular dynamics simulation studies over 150 ns against the main protease of the SARS CoV-2. They showed promising docking scores on Glide, iDock and AutoDock Vina algorithms (ligand F2679-0163: -10.75, -10.29 and -9.2; ligand F6355-0442: -9.38, -8.61 and -7.6; ligand 8250: -9.795, -7.94 and -7.5), respectively. The RMSD parameter remained stable at 2.5 Å for all the three ligands for 150 ns. The high RMSF fluctuations, RoG of around 22 Å and the binding free energy were favorable in each case. The hydrogen bond interactions of 8250, F6355-0442 and F2679-0163 were six, five and three, respectively. These compounds can be further explored for in vitro experimental validation against SARS-CoV-2. Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas
4.
Database (Oxford) ; 20202020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32542363

RESUMEN

Despite Plasmodium vivax being the main offender in the majority of malarial infections, very little information is available about its adaptation and development in humans. Its capability for activating relapsing infections through its dormant liver stage and resistance to antimalarial drugs makes it as one of the major challenges in eradicating malaria. Noting the immediate necessity for the availability of a comprehensive and reliable structural and functional repository for P. vivax proteome, here we developed a web resource for the new reference genome, PvP01, furnishing information on sequence, structure, functions, active sites and metabolic pathways compiled and predicted using some of the state-of-the-art methods in respective fields. The PvP01 web resource comprises organized data on the soluble proteome consisting of 3664 proteins in blood and liver stages of malarial cycle. The current public resources represent only 163 proteins of soluble proteome of PvP01, with complete information about their molecular function, biological process and cellular components. Also, only 46 proteins of P. vivax have experimentally determined structures. In this milieu of extreme scarcity of structural and functional information, PvP01 web resource offers meticulously validated structures of 3664 soluble proteins. The sequence and structure-based functional characterization led to a quantum leap from 163 proteins available presently to whole soluble proteome offered through PvP01 web resource. We believe PvP01 web resource will serve the researchers in identifying novel protein drug targets and in accelerating the development of structure-based new drug candidates to combat malaria. Database Availability: http://www.scfbio-iitd.res.in/PvP01.


Asunto(s)
Bases de Datos Genéticas , Plasmodium vivax/genética , Proteoma/genética , Proteínas Protozoarias/genética , Programas Informáticos , Humanos , Malaria Vivax/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA