Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 13(619): eabh1314, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34757807

RESUMEN

The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics­without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.


Asunto(s)
Dolor Crónico , Canal de Sodio Activado por Voltaje NAV1.7 , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Roedores/metabolismo , Sumoilación
2.
ACS Omega ; 4(1): 1254-1264, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30729225

RESUMEN

Macrocyclic triamine disulfonamides can be synthesized by double Tsuji-Trost N-allylation reaction of open-chain disulfonamides with 2-alkylidene-1,3-propanediyl bis(carbonates). The previously used Atkins-Richman macrocyclization method generally gives lower yields and requires more tedious purification of the product. Solvent, palladium source, ligand, and concentration have all been varied to optimize the yields of two key 12-membered ring bioactive compounds, CADA and VGD020. The new approach tolerates a wide range of functional groups and gives highest yields for symmetrical compounds in which the acidities of the two sulfonamide groups are matched, although the yields of unsymmetrical compounds are still generally good. The method has also been extended to the synthesis of 11-membered rings, pyridine-fused macrocycles, and products bearing an ester or aryl substituent on the exocyclic double bond.

3.
Nat Nanotechnol ; 13(12): 1148-1153, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30297819

RESUMEN

Gold nanorods are one of the most widely explored inorganic materials in nanomedicine for diagnostics, therapeutics and sensing1. It has been shown that gold nanorods are not cytotoxic and localize within cytoplasmic vesicles following endocytosis, with no nuclear localization2,3, but other studies have reported alterations in gene expression profiles in cells following exposure to gold nanorods, via unknown mechanisms4. In this work we describe a pathway that can contribute to this phenomenon. By mapping the intracellular chemical speciation process of gold nanorods, we show that the commonly used Au-thiol conjugation, which is important for maintaining the noble (inert) properties of gold nanostructures, is altered following endocytosis, resulting in the formation of Au(I)-thiolates that localize in the nucleus5. Furthermore, we show that nuclear localization of the gold species perturbs the dynamic microenvironment within the nucleus and triggers alteration of gene expression in human cells. We demonstrate this using quantitative visualization of ubiquitous DNA G-quadruplex structures, which are sensitive to ionic imbalances, as an indicator of the formation of structural alterations in genomic DNA.


Asunto(s)
Núcleo Celular/genética , ADN/química , G-Cuádruplex , Oro/metabolismo , Nanotubos , Compuestos de Sulfhidrilo/metabolismo , Núcleo Celular/metabolismo , ADN/genética , Endocitosis , Regulación de la Expresión Génica , Oro/análisis , Células HEK293 , Humanos , Células MCF-7 , Nanotubos/análisis , Nanotubos/ultraestructura , Compuestos de Sulfhidrilo/análisis
4.
J Am Chem Soc ; 139(25): 8522-8536, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28570076

RESUMEN

Activating KRAS mutations frequently occur in pancreatic, colorectal, and lung adenocarcinomas. While many attempts have been made to target oncogenic KRAS, no clinically useful therapies currently exist. Most efforts to target KRAS have focused on inhibiting the mutant protein; a less explored approach involves targeting KRAS at the transcriptional level. The promoter element of the KRAS gene contains a GC-rich nuclease hypersensitive site with three potential DNA secondary structure-forming regions. These are referred to as the Near-, Mid-, and Far-regions, on the basis of their proximity to the transcription start site. As a result of transcription-induced negative superhelicity, these regions can open up to form unique DNA secondary structures: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. While the G-quadruplexes have been well characterized, the i-motifs have not been investigated as thoroughly. Here we show that the i-motif that forms in the C-rich Mid-region is the most stable and exists in a dynamic equilibrium with a hybrid i-motif/hairpin species and an unfolded hairpin species. The transcription factor heterogeneous nuclear ribonucleoprotein K (hnRNP K) was found to bind selectively to the i-motif species and to positively modulate KRAS transcription. Additionally, we identified a benzophenanthridine alkaloid that dissipates the hairpin species and destabilizes the interaction of hnRNP K with the Mid-region i-motif. This same compound stabilizes the three existing KRAS G-quadruplexes. The combined effect of the compound on the Mid-region i-motif and the G-quadruplexes leads to downregulation of KRAS gene expression. This dual i-motif/G-quadruplex-interactive compound presents a new mechanism to modulate gene expression.


Asunto(s)
G-Cuádruplex , Oligonucleótidos/farmacología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Secuencia de Aminoácidos , Química Farmacéutica , Dicroismo Circular , Silenciador del Gen/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Mutación , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transcripción Genética/efectos de los fármacos
5.
J Am Chem Soc ; 139(22): 7456-7475, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28471683

RESUMEN

The platelet-derived growth factor receptor ß (PDGFR-ß) signaling pathway is a validated and important target for the treatment of certain malignant and nonmalignant pathologies. We previously identified a G-quadruplex-forming nuclease hypersensitive element (NHE) in the human PDGFR-ß promoter that putatively forms four overlapping G-quadruplexes. Therefore, we further investigated the structures and biological roles of the G-quadruplexes and i-motifs in the PDGFR-ß NHE with the ultimate goal of demonstrating an alternate and effective strategy for molecularly targeting the PDGFR-ß pathway. Significantly, we show that the primary G-quadruplex receptor for repression of PDGFR-ß is the 3'-end G-quadruplex, which has a GGA sequence at the 3'-end. Mutation studies using luciferase reporter plasmids highlight a novel set of G-quadruplex point mutations, some of which seem to provide conflicting results on effects on gene expression, prompting further investigation into the effect of these mutations on the i-motif-forming strand. Herein we characterize the formation of an equilibrium between at least two different i-motifs from the cytosine-rich (C-rich) sequence of the PDGFR-ß NHE. The apparently conflicting mutation results can be rationalized if we take into account the single base point mutation made in a critical cytosine run in the PDGFR-ß NHE that dramatically affects the equilibrium of i-motifs formed from this sequence. We identified a group of ellipticines that targets the G-quadruplexes in the PDGFR-ß promoter, and from this series of compounds, we selected the ellipticine analog GSA1129, which selectively targets the 3'-end G-quadruplex, to shift the dynamic equilibrium in the full-length sequence to favor this structure. We also identified a benzothiophene-2-carboxamide (NSC309874) as a PDGFR-ß i-motif-interactive compound. In vitro, GSA1129 and NSC309874 downregulate PDGFR-ß promoter activity and transcript in the neuroblastoma cell line SK-N-SH at subcytotoxic cell concentrations. GSA1129 also inhibits PDGFR-ß-driven cell proliferation and migration. With an established preclinical murine model of acute lung injury, we demonstrate that GSA1129 attenuates endotoxin-mediated acute lung inflammation. Our studies underscore the importance of considering the effects of point mutations on structure formation from the G- and C-rich sequences and provide further evidence for the involvement of both strands and associated structures in the control of gene expression.


Asunto(s)
Secuencias de Aminoácidos , Desoxirribonucleasas/química , Sistemas de Liberación de Medicamentos , G-Cuádruplex , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/química , Secuencia de Bases , Regulación hacia Abajo , G-Cuádruplex/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Mutación , Regiones Promotoras Genéticas
6.
J Med Chem ; 59(6): 2633-47, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26974263

RESUMEN

Cyclotriazadisulfonamide prevents HIV entry into cells by down-modulating surface CD4 receptor expression through binding to the CD4 signal peptide. According to a two-site binding model, 28 new unsymmetrical analogues bearing a benzyl tail group and nine bearing a cyclohexylmethyl tail have been designed and synthesized. The most potent new CD4 down-modulator (40 (CK147); IC50 63 nM) has a 4-dimethylaminobenzenesulfonyl side arm. One of the two side arms was varied with substituents in different positions. This gave a range of CD4 down-modulation potencies that correlated well with anti-HIV-1 activities. The side arms of 21 of the new benzyl-tailed analogues were modeled by means of quantum mechanical calculations. For CADA analogues with arenesulfonamide side arms, the pIC50 values for CD4 down-modulation correlated with the component of the electric dipole moment in the aromatic ring, suggesting that an attractive electronic interaction is a major factor determining the stability of the complex between the molecule and its target.


Asunto(s)
Antígenos CD4/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Inhibidores de Fusión de VIH/síntesis química , Inhibidores de Fusión de VIH/farmacología , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/farmacología , Transporte de Proteínas/efectos de los fármacos , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Animales , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Regulación hacia Abajo/efectos de los fármacos , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA