Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124916, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096679

RESUMEN

Quality of pet foods can be affected by many factors such as raw materials, formulations, and processing techniques. The pet food manufacturers require fast analyses to control the nutritional quality of their products. Herein, near-infrared spectroscopy (NIR) was evaluated to quantify the chemical composition of pet food, and the performances of two NIR spectrometers were investigated and compared: a benchtop instrument (1000-2500 nm) and a low-cost handheld instrument (900-1700 nm). Seventy cat food and thirty-six dog samples were characterized using reference methods for crude protein, crude fat, crude fibre, crude ash, moisture, calcium (Ca), and phosphorus (P). Principal component regression (PCR) and partial least squares regression (PLSR) were used to establish the models that involved the cat food and mixed model. The characteristic wavelengths were selected using a competitive adaptive reweighted-sampling (CARS) algorithm. The Optimal models obtained from the benchtop instrument for crude protein, crude fat, and moisture were classified as "Good" or "Very good" (Residual prediction variation (RPD) > 3), for crude fibre were classified as "Poor" (RPD>2), and for crude ash, Ca and P (RPD<2) were classified as "Very poor". The Optimal calibrations obtained from the handheld instrument for crude protein, crude fat, and moisture were classified as "Good" or "Very good" (RPD>3), for crude fibre, crude ash, Ca, and P were classified as "Very poor" (RPD<2). Generally, the the performance of benchtop and handheld instrument was close, and the cat food model outperformed the mixed model. Results from the current study revealed the potential to monitor the chemical compositions in pet food on a large scale.

2.
J Anim Sci Biotechnol ; 15(1): 89, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38951898

RESUMEN

BACKGROUND: Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rhamnosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG (n = 10) and control group (n = 10). RESULTS: In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifidobacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses highlighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in newborn piglets, reduced inflammation, and facilitated the establishment of a gut microbiota. CONCLUSIONS: We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring survival by modulating the gut microbiota and amino acid metabolism.

3.
J Anim Sci Biotechnol ; 15(1): 95, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972969

RESUMEN

BACKGROUND: At present, heat stress (HS) has become a key factor that impairs broiler breeding industry, which causes growth restriction and poor meat quality of broilers. Selenium (Se) is an excellent antioxidant and plays a unique role in meat quality improvement. Recent years, nano-selenium (NanoSe) has received tremendous attention in livestock production, due to its characteristic and good antibacterial performance in vitro. Here, we developed the heat stressed-broiler model to investigate the protective effects of NanoSe on growth performance and meat quality of broilers and compare whether there are differences with that of other Se sources (Sodium selenite, SS; Selenoyeast, SeY; Selenomethionine, SeMet). RESULTS: HS jeopardized the growth performance and caused poor meat quality of breast muscle in broilers, which were accompanied by lowered antioxidant capacity, increased glycolysis, increased anaerobic metabolism of pyruvate, mitochondrial stress and abnormal mitochondrial tricarboxylic acid (TCA) cycle. All Se sources supplementation exhibited protective effects, which increased the Se concentration and promoted the expression of selenoproteins, improved the mitochondrial homeostasis and the antioxidant capacity, and promoted the TCA cycle and the aerobic metabolism of pyruvate, thus improved the breast muscle meat quality of broilers exposed to HS. However, unlike the other three Se sources, the protective effect of NanoSe on meat quality of heat stressed-broilers was not ideal, which exhibited limited impact on the pH value, drip loss and cooking loss of the breast muscle. Compared with the other Se sources, broilers received NanoSe showed the lowest levels of slow MyHC, the highest levels of fast MyHC and glycogen, the highest mRNA levels of glycolysis-related genes (PFKM and PKM), the highest protein expression of HSP60 and CLPP, and the lowest enzyme activities of GSH-Px, citroyl synthetase (CS) and isocitrate dehydrogenase (ICD) in breast muscle. Consistent with the SS, the Se deposition in breast muscle of broilers received NanoSe was lower than that of broilers received SeY or SeMet. Besides, the regulatory efficiency of NanoSe on the expression of key selenoproteins (such as SELENOS) in breast muscle of heat stressed-broilers was also worse than that of other Se sources. CONCLUSION: Through comparing the meat quality, Se deposition, muscle fiber type conversion, glycolysis, mitochondrial homeostasis, and mitochondrial TCA cycle-related indicators of breast muscle in heat stressed broilers, we found that the protective effects of organic Se (SeY and SeMet) are better than that of inorganic Se (SS) and NanoSe. As a new Se source, though NanoSe showed some protective effect on breast muscle meat quality of heat stressed broilers, the protective effect of NanoSe is not ideal, compared with other Se sources.

4.
J Nutr ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053607

RESUMEN

BACKGROUND: Fried food has increased in popularity worldwide. However, deep frying can increase the production of peroxidative toxins in food, which might be harmful to fetal development. The antioxidative effect of vitamin D3 (VD3) has been reported previously. OBJECTIVES: This study aimed to explore how maternal VD3 supplementation in an oxidized-oil diet during gestation affects fetal antioxidative ability and development. METHODS: Pregnant mice were randomly assigned into 3 groups: Control group (diet with fresh soybean oil), OSO group [diet with oxidized soybean oil (OSO)], and OSOV group (diet with OSO and 10,000 IU/Kg VD3). Mice were fed with the corresponding diet during gestation. On day 16.5 of gestation, the placenta and fetus were harvested to analyze antioxidative status. RESULTS: Maternal oxidized-oil diet during gestation significantly reduced placental vessel abundance, labyrinth zone area, and fetal body weight. However, dietary VD3 supplementation prevented these negative effects of oxidized-oil diet. Maternal intake of oxidized-oil diet increased serum concentrations of malondialdehyde, total-nitric oxide synthase, and inducible nitric oxide synthase, whereas VD3 supplementation showed a protection effect on it. Additionally, maternal VD3 supplementation increased the levels of antioxidative enzymes and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby protecting placenta and fetus from apoptosis and oxidative stress caused by an oxidized-oil diet. The gene expression and protein levels of a fatty acid transporter solute carrier family 27 member 1 in the fetal liver were increased by maternal VD3 supplementation under oxidized-oil diet. Notably, NRF2 could be co-immunoprecipitated with the VD receptor in the placenta. CONCLUSIONS: Maternal VD3 supplementation could protect fetus from oxidized-oil diet induced developmental impairment by alleviating oxidative stress in the placenta and fetus through the VD receptor/NRF2 pathway, at least partially. Thus, ensuring adequate levels of VD3 through supplementation is often critical during pregnancy.

5.
Anim Microbiome ; 6(1): 34, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907293

RESUMEN

BACKGROUND: Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation. RESULTS: Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration. CONCLUSIONS: DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.

6.
Front Vet Sci ; 11: 1392399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895713

RESUMEN

Pectin is a proven prebiotic and widely used in human health products. This study aims to assess the impact of dietary pectin supplementation during gestation on sow vaginal microbiota and the offspring's intestinal composition. Thirty sows were randomly allocated to two groups and fed a standard diet (CON) or a standard diet supplemented with 3 g/kg pectin (PEC). Blood, feces, and vaginal swab samples from the sows and blood, intestines issue, and colonic content samples from the offspring were collected and analyzed. The results indicate that the relative abundance of vaginal Lactobacillus was notably enhanced in the PEC group and fecal ß-glucuronidase (ß-G) activity and plasma 17ß-estradiol (E2) concentration were also significantly increased in the PEC group. Newborn piglets were found to host different microbial communities as well. At the phylum level, Proteobacteria dominated in the CON group, and Firmicutes was predominant in the PEC group. Newborn piglets in the PEC group had a lower interleukin-6 (IL-6) concentration in their plasma. The expression of intestinal cytokines of offspring was improved as well. Villus height and villus height/crypt depth (V/C) in the PEC group were extremely higher than those in the CON group. In conclusion, dietary pectin supplementation can be of benefit to both sows and newborn piglets.

7.
Animals (Basel) ; 14(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891606

RESUMEN

This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of ß-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1ß, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.

8.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38560889

RESUMEN

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Asunto(s)
Ácidos y Sales Biliares , Zearalenona , Humanos , Ratas , Masculino , Femenino , Animales , Ácidos y Sales Biliares/metabolismo , Zearalenona/metabolismo , Hígado/metabolismo , Hipotálamo , Ingestión de Alimentos
9.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38622951

RESUMEN

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Asunto(s)
Aminoácidos , Alimentos Fermentados , Porcinos , Animales , Femenino , Embarazo , Aminoácidos/metabolismo , Digestión/fisiología , Glutamina/metabolismo , Triptófano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Glycine max , Dieta/veterinaria , Arginina/metabolismo , Serina , Alimentación Animal/análisis , Íleon/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales
10.
J Proteomics ; 297: 105123, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364904

RESUMEN

Many studies have shown that fiber in the diet plays an important role in improving the reproductive performance of sows, but there is rarely research on the impact of fiber on early embryo implantation. This study used 4D-Label free technology to identify and analyze the effect of the fiber composition in the diet on the protein in the early pregnancy uterine fluid (UF) of sows. The results indicate that ratio of insoluble fibers to soluble fibers (ISF/SF) 4.89 can increase the concentration of progesterone (PROG) and reduce tumor necrosis factorα (TNF-α) concentration in sow UF. In addition, through 4D-Label free, we identified a total of 4248 proteins, 38 proteins abundance upregulated and 283 proteins abundance downregulated in UF. Through enrichment analysis of these differential abundance proteins (DAPs), it was found that these differential proteins are mainly related to the docking of extracellular vesicles, vesicular transport, inflammatory response, and insulin resistance. Therefore, the results of this study reveal the possible mechanism by which fiber improves the reproductive performance of sows, laying a theoretical foundation for future research on the effects of diet on reproduction. SIGNIFICANCE: This study demonstrates the importance of dietary fiber for early embryo implantation in sows. The effect of dietary ISF/SF on early embryo implantation in sows was elucidated from a proteomic perspective through 4D-Label free technology. This study not only has significant implications for improving sow reproductive efficiency, but also provides important theoretical references for studying early miscarriage and reproductive nutrition in human pregnancy.


Asunto(s)
Proteómica , Reproducción , Embarazo , Porcinos , Animales , Femenino , Humanos , Implantación del Embrión , Dieta/veterinaria , Útero , Fibras de la Dieta/análisis , Fibras de la Dieta/farmacología , Alimentación Animal/análisis , Lactancia
11.
J Anim Sci Biotechnol ; 15(1): 19, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310243

RESUMEN

BACKGROUND: Intrauterine growth retardation (IUGR) affects intestinal growth, morphology, and function, which leads to poor growth performance and high mortality. The present study explored whether maternal dietary methyl donor (MET) supplementation alleviates IUGR and enhances offspring's growth performance by improving intestinal growth, function, and DNA methylation of the ileum in a porcine IUGR model. METHODS: Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery. After farrowing, 8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum. RESULTS: The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets. Moreover, maternal MET supplementation significantly reduced the plasma concentrations of isoleucine, cysteine, urea, and total amino acids in sows and newborn piglets. It also increased lactase and sucrase activity in the jejunum of newborn piglets. MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets. DNA methylation analysis of the ileum showed that MET supplementation increased the methylation level of DNA CpG sites in the ileum of newborn piglets. Down-regulated differentially methylated genes were enriched in folic acid binding, insulin receptor signaling pathway, and endothelial cell proliferation. In contrast, up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosynthetic process. CONCLUSIONS: Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets, which may be associated with better intestinal function and methylation status.

12.
Anim Nutr ; 16: 363-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362514

RESUMEN

In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.

13.
Animals (Basel) ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38200893

RESUMEN

The purpose of this study is to investigate the effects of supplementing Yeast-derived postbiotics (Y-dP) to the diet of sows during late pregnancy and lactation on fecal microbiota and short-chain fatty acids (SCFA) in sows and their offspring weaned piglets, as well as the relationship between gut microbiota and SCFA, serum cytokines, and sow reproductive performance. A total of 150 sows were divided into three groups: control diet (CON), CON + Y-dP 1.25 g/kg, and CON + Y-dP 2 g/kg. The results showed that supplementing 0.125% Y-dP to the diet of sows can increase the content of isobutyric acid (IBA) in the feces of pregnant sows and reduce the content of butyric acid (BA) in the feces of weaned piglets (p < 0.05). The fecal microbiota of pregnant sows ß diversity reduced and piglet fecal microbiota ß diversity increased (p < 0.05). Y-dP significantly increased the abundance of Actinobacteria and Limosilactobacilli in the feces of pregnant sows (p < 0.05), as well as the abundance of Verrucomicrobiota, Bacteroidota, and Fusobacteriota in the feces of piglets (p < 0.05). The abundance of Bacteroidota in the feces of pregnant sows is positively correlated with propionic acid (PA) (r > 0.5, p < 0.05). The abundance of Prevotellaceae_NK3B31_group was positively correlated with Acetic acid (AA), PA, Valerate acid (VA), and total volatile fatty acid (TVFA) in the feces of pregnant sows (r > 0.5, p < 0.05), and Bacteroidota and Prevotellaceae_NK3B31_group were negatively correlated with the number of stillbirths (r < -0.5, p < 0.05). The abundance of Lactobacillus and Holdemanella in piglet feces was positively correlated with TVFA in feces and negatively correlated with IgA in serum (r > 0.5, p < 0.05). In conclusion, supplementing Y-dP to the diet of sows from late gestation to lactation can increase the chao1 index and α diversity of fecal microorganisms in sows during lactation, increase the abundance of Actinobacteria and Limosilactobacilli in the feces of sows during pregnancy, and increase the abundance of beneficial bacteria such as Bacteroidetes in piglet feces, thereby improving intestinal health. These findings provide a reference for the application of Y-dP in sow production and a theoretical basis for Y-dP to improve sow production performance.

14.
Poult Sci ; 103(2): 103260, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096665

RESUMEN

Growth performance and carcass traits may be retarded by low nutrient density diets. Organic chromium propionate (CrProp) can improve growth, carcass traits, and meat quality in farmed lambs, white broilers, and fish. Limited data regarding CrProp's impacts on yellow-feathered broilers are available. Eight hundred yellow-feathered male broilers (1-day old) were randomly allocated to 4 dietary groups and reared for 56 d. The trial was a 2 (dietary nutrient density) ×2 (CrProp) factorial arrangement with 4 diets: regular nutrient diet and low nutrient density (LND, reduction in metabolizable energy by 81 kcal and crude protein by 0.43%) diet supplemented with or without 200 mg/kg CrProp. Broilers were euthanized at d 56 after blood collection. The results indicated that the LND diet led to greater average daily feed intake (ADFI) from d 1 to 42 and feed conversion ratio (FCR) from d 22 to 42 (P < 0.05). Supplementation of CrProp improved body weight (BW) from d 1 to 56, average daily gain (ADG), and FCR during d 1 to 42 but reduced ADFI during d 1 to 21, as well as lowered abdominal fat percentage (P < 0.05). Supplementation with CrProp to regular and LND diets reduced ADFI but improved FCR from d 1 to 21 (P < 0.05). The LND diet lowered total antioxidant capacity (T-AOC) concentration and total superoxide dismutase (T-SOD) activity in the jejunal mucosa. CrProp elevated T-AOC levels and glutathione peroxidase activity (GSH-Px, P < 0.05). Dietary CrProp upregulated (P < 0.05) the expression of fatty acid transporter (FABP1) gene and peptide transporter (Pept1) gene. CrProp administration increased jejunal FABP1 expression and lowered cooking loss of breast meat (P < 0.05) in the LND group while reducing shear force (P = 0.009) of broilers treated by regular diet. In summary, CrProp administration to the LND diet can improve growth performance in the starter period and meat quality on d 56, possibly through upregulated nutrient transporter gene expression in the jejunum and enhanced antioxidant capability.


Asunto(s)
Antioxidantes , Pollos , Propionatos , Animales , Masculino , Ovinos , Antioxidantes/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Carne/análisis , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
15.
J Agric Food Chem ; 72(1): 153-165, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38130066

RESUMEN

Antimicrobial peptides have been extensively studied as potential alternatives to antibiotics. Porcine angiogenin 4 (pANG4) is a novel antimicrobial peptide in the angiogenin (ANG) family, which may have a regulatory effect on intestinal microflora. The object of present study is obtained pANG4 protein by heterologous expression, so as to explore the biological function of recombinant pANG4 (rpANG4). The pANG4 was expressed in Pichia pastoris (P. pastoris) and anti-inflammatory effects were investigated in intestinal porcine epithelial cell line-J2 (IPEC-J2) and mice. Purified rpANG4 had bacteriostatic activity and did not cause hemolysis or cytotoxicity at concentrations below 128 µg/mL. Purified rpANG4 increased the activity of IPEC-J2 and reduced apoptosis in vitro. rpANG4 reduced the pro-inflammatory gene expression and upregulated tight junction protein gene expression during inflammation. rpANG4 alleviated lipopolysaccharide (LPS)-induced liver and spleen damage, intestinal inflammation, jejunal apoptosis genes' expression, and improved immune function in an in vivo mice model. rpANG4 increased tight junction protein gene expression in jejunum, thereby improving the jejunum intestinal barrier function. In conclusion, rpANG4 had antibacterial activity, inhibited intestinal inflammation, improved intestinal barrier function, and alleviated liver and spleen damage. The current study contributes to the development of antibiotic substitutes and the improvement of animal health.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Porcinos , Animales , Ratones , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo
16.
Life Sci ; 338: 122380, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142738

RESUMEN

AIMS: The obesity epidemic, especially in pregnant women, linked to a higher risk of liver diseases. Bile acids (BAs) are known to participate in liver metabolism, but this function during obesogenic reproductive process remains largely uncertain. The study aims to identify whether a high-fat diet (HFD) during pregnancy negatively disturbs liver metabolism and the potential role of BAs and gut microbiota (GM)in a sow model. MAIN METHODS: Reproductive (RP) or non-reproductive (NRP) sows were fed a 15 % HFD containing compound oil. Body condition, blood parameters, and BAs levels/profile during gestation and lactation were monitored. The tissues and colonic GM were collected after euthanasia at the end of lactation. HepG2 hepatocytes were used to test the effects of BAs on liver damage and the mechanism. KEY FINDINGS: Reproductive sows fed an HFD (HF-RP) experienced increased weight loss, and elevated plasma non-esterified fatty acid (NEFA) during lactation, consistent with exacerbated lipolysis, aggravating the risk of liver damage. HF-RP sows exhibited an enlarged BAs pool size and alterations in composition (higher levels of CDCA and LCA species) along with a drastic change in the GM (increased Firmicutes/Bacteroidetes ratio and declined Lactobacillus abundance). Furthermore, the liver FXR-SHP pathway, BAs synthesis and transport underwent adaptive regulation to sustain the BAs homeostasis and hepatic lipid metabolism. CDCA alleviated endoplasmic reticulum (ER) stress induced by palmitic acid via FXR pathway, in HepG2 cells. SIGNIFICANCE: Lactation BAs metabolism signal in gut-liver axis coordinated the risk of liver damage induced by exacerbated lipolysis in obesogenic pregnancy.


Asunto(s)
Lactancia , Hígado , Femenino , Porcinos , Animales , Humanos , Embarazo , Hígado/metabolismo , Colon/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Ácidos y Sales Biliares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA