Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Gastroenterol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097533

RESUMEN

BACKGROUND: Hypoxic microenvironment is a common feature of most solid tumors including hepatocellular carcinoma (HCC). Vasculogenic mimicry (VM) formation by tumor cells could provide blood supply to tumor cells under hypoxia. NFE2 like basic leucine zipper (bZIP) transcription factor 2 (Nrf2), a regulator of cellular homeostasis, may promote tumor progression in the hypoxic conditions. However, the role and regulatory mechanisms of Nrf2 in HCC are not fully elucidated. METHODS: Nrf2 and assembly factor for spindle microtubules (ASPM) expression modulations were conducted by lentiviral transfections. Western blot, immunofluorescence, ChIP-qPCR, dual-luciferase reporter gene assay, flow cytometry, RNA sequencing, multiple bioinformatics databases analysis, cell function assays in vitro, mouse model in vivo and human HCC tissues were employed to assess the effect of Nrf2/ASPM axis on HCC progression under hypoxia. RESULTS: Nrf2 and ASPM expression facilitated epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) feature, and VM formation of HCC cells under hypoxia. Furthermore, Nrf2-regulated ASPM expression, via binding directly to the promoter region of ASPM and transcriptionally promoting ASPM expression. ASPM re-expression in Nrf2 knockdown cells or ASPM knockdown in Nrf2 overexpression cells reversed the cellular function caused by Nrf2. Meantime, retinol metabolism pathway was disrupted following abnormal ASPM expression. Nrf2/ASPM axis in murine models accelerated tumor growth and VM, corroborating in vitro findings. All-trans retinoic acid treatment reversed stemness and VM of HCC cells in vitro and in vivo. Clinically, Nrf2 and ASPM expressions were related to poor prognosis of HCC patients. CONCLUSIONS: Nrf2 drives EMT, CSCs characteristics and VM in HCC under hypoxia through the modulation of ASPM. Retinol metabolism pathway was dysregulated in HCC cells with ASPM overexpression. Nrf2/ASPM axis and related pathway provided potential therapeutic target for HCC.

2.
Int J Med Sci ; 21(8): 1385-1398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903915

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease, characterized by dysregulated immune response. HDAC3 is reported to be an epigenetic brake in inflammation, playing critical roles in macrophages. However, its role in IBD is unclear. In our study, we found HDAC3 was upregulated in CX3CR1-positive cells in the mucosa from IBD mice. Conditional knockout (cKO) of Hdac3 in CX3CR1 positive cells attenuated the disease severity of Dextran Sulfate Sodium (DSS)-induced colitis. In addition, inhibition of HDAC3 with RGFP966 could also alleviate the DSS-induced tissue injury and inflammation in IBD. The RNA sequencing results revealed that Hdac3 cKO restrained DSS-induced upregulation of genes in the pathways of cytokine-cytokine receptor interaction, complement and coagulation cascades, chemokine signaling, and extracellular matrix receptor interaction. We also identified that Guanylate-Binding Protein 5 (GBP5) was transcriptionally regulated by HDAC3 in monocytes by RNA sequencing. Inhibition of HDAC3 resulted in decreased transcriptional activity of interferon-gamma-induced expression of GBP5 in CX3CR1-positive cells, such as macrophages and microglia. Overexpression of HDAC3 upregulated the transcriptional activity of GBP5 reporter. Lastly, conditional knockout of Hdac3 in macrophages (Hdac3 mKO) attenuated the disease severity of DSS-induced colitis. In conclusion, inhibition of HDAC3 in macrophages could ameliorate the disease severity and inflammatory response in colitis by regulating GBP5-NLRP3 axis, identifying a new therapeutic avenue for the treatment of colitis.


Asunto(s)
Colitis , Sulfato de Dextran , Histona Desacetilasas , Macrófagos , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Sulfato de Dextran/toxicidad , Sulfato de Dextran/efectos adversos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colitis/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Modelos Animales de Enfermedad , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Ratones Endogámicos C57BL , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Acrilamidas , Fenilendiaminas
4.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671389

RESUMEN

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Asunto(s)
Movimiento Celular , Proliferación Celular , Desmocolinas , Desmogleína 2 , Neoplasias de la Mama Triple Negativas , Humanos , Desmocolinas/metabolismo , Desmocolinas/genética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica , beta Catenina/metabolismo , Transducción de Señal
5.
Cancer Sci ; 115(6): 2067-2081, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566528

RESUMEN

Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.


Asunto(s)
Proliferación Celular , Ferroptosis , Subtipo EP3 de Receptores de Prostaglandina E , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Paclitaxel/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pronóstico , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo
6.
BMC Gastroenterol ; 24(1): 33, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221614

RESUMEN

OBJECTIVES: Most signatures are constructed on the basis of RNA or protein expression levels. The value of vascular invasion-related signatures based on lncRNA pairs, regardless of their specific expression level in hepatocellular carcinoma (HCC), is not yet clear. METHODS: Vascular invasion-related differentially expressed lncRNA (DElncRNA) pairs were identified with a two-lncRNA combination strategy by using a novel modeling algorithm. Based on the optimal cutoff value of the ROC curve, patients with HCC were classified into high- and low-risk subgroups. We used KM survival analysis to evaluate the overall survival rate of patients in the high- and low-risk subgroups. The independent indicators of survival were identified using univariate and multivariate Cox analyses. RESULTS: Five pairs of vascular invasion-related DElncRNAs were selected to develop a predictive model for HCC. High-risk subgroups were closely associated with aggressive clinicopathological characteristics and genes, chemotherapeutic sensitivity, and highly expressed immune checkpoint inhibitors. CONCLUSIONS: We identified a signature composed of 5 pairs of vascular invasion-related lncRNAs that does not require absolute expression levels of lncRNAs and shows promising clinical predictive value for HCC prognosis. This predictive model provides deep insight into the value of vascular invasion-related lncRNAs in prognosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Algoritmos
7.
Dig Liver Dis ; 56(8): 1382-1399, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38290958

RESUMEN

BACKGROUND: NDRG1, the first member of the NDRG family, is a multifunctional protein associated with carcinogenesis. Its function in human cancer is currently poorly understood. The aim of this study was to explore the importance of NDRG1 in tumor immune cell infiltration and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. METHODS: NDRG1 expression in various cancers was analyzed using TIMER 2.0, the Human Protein Atlas (HPA), UALCAN and PrognoScan. Wound healing, Transwell, MTT and colony formation assays were performed to confirm the effects of NDRG1 on the metastasis and proliferation of HCC cells. Western blotting was used to study the effect of NDRG1 on the expression of EMT-related proteins. Signaling networks were constructed using LinkedOmics and Metascape. TIMER2.0 and TISIDB were used for comprehensive analysis of tumor-infiltrating immune cells and tumor-infiltrating lymphocytes (TILs). RESULT: NDRG1 expression was higher in HCC tissue than in normal liver tissue at both the mRNA and protein levels. Overexpression of NDRG1 is associated with poor prognosis in HCC patients. Genomic analysis suggests that NDRG1 promoter hypermethylation leads to enhanced transcription, which may be one mechanism for NDRG1 upregulation in HCC. The overexpression of NDRG1 promotes the invasion, migration, and proliferation of HCC cells and induces the expression of EMT-related proteins. Immunoinfiltration analysis suggests that NDRG1 is involved in the recruitment of immune cells. CONCLUSIONS: The present study showed that NDRG1 may induce metastasis and invasion through EMT and immune cell infiltration. NDRG1 could be used as a biomarker for the diagnosis and prognosis of HCC and could be a potential therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Transición Epitelial-Mesenquimal/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pronóstico , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Línea Celular Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Masculino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular/genética , Femenino
8.
Clin Breast Cancer ; 24(1): e20-e30.e6, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37880005

RESUMEN

BACKGROUND: Luminal A breast cancer is the most common molecular subtype of breast cancer. Exploring biomarkers to identify luminal A breast cancer patients at high risk of recurrence and metastasis has important clinical significance. UTP23 is a component of ribosomal small-subunit processome, which is involved in ribosome synthesis and RNA maturation. The role of UTP23 in breast cancer has not been reported. METHODS: TCGA-BRCA data, LinkedOmics, STRING, Metascape and ssGSEA were used to analyze UTP23 expression in breast cancer and evaluate prognosis. Quantitative real-time PCR, western blot and in vitro cell experiment were used to demonstrate the role of UTP23 in breast cancer. RESULTS: UTP23 showed abnormally high expression in multiple cancers and was associated with poor prognosis. UTP23 was associated with T stage, lymph node metastasis, race, histological type, molecular subtypes and survival status in breast cancer. Importantly, UTP23 was significantly associated with poor OS in luminal A or early breast cancer, not in non-luminal A or advanced breast cancer. UTP23 expression was significantly correlated with immune cells infiltration. Enrichment analysis suggested that UTP23 might regulate cell cycle and cell division. Bioinformatics analysis showed DCAF13 might be downstream factor of UTP23. UTP23 expression promoted MCF-7 cells proliferation, migration and invasion possibly through regulating DCAF13 expression. CONCLUSIONS: UTP23 may function in breast cancer progression. The elevated UTP23 may be a potential prognostic biomarker for luminal A or early breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia/patología , Pronóstico
9.
Artículo en Chino | MEDLINE | ID: mdl-37905480

RESUMEN

Objective:To investigate the correlation between FCER2(2206A>G) gene polymorphism and the efficacy of inhaled corticosteroids(ICS) in patients with chronic rhinosinusitis(CRS). Methods:A total of 208 CRS patients were routinely treated with functional endonasal sinus surgery and postoperative ICS. DNA extraction, PCR amplification and gene sequencing were performed to observe the FCER2(2206A>G) gene polymorphism and calculate the allele frequency. The visual analog scale(VAS) score, Lund-Kennedy score, and computed tomography(CT) Lund-Mackay score were determined 6 months after surgery among patients with different genotypes. Moreover, the polymorphism frequency was compared among different subgroups(chronic rhinosinusitis with nasal polyps versus chronic rhinosinusitis without nasal polyps, eosinophilic chronic rhinosinusitis versus non-eosinophilic chronic rhinosinusitis). Results:There were FCER2(2206A>G) gene polymorphism in patients with CRS, and the phenotypes included 3 genotypes, AA, AG and GG, with distribution frequencies of 68(32.7%), 116(55.8%) and 24(11.5%) cases, respectively. No significant differences were found in age, VAS score, nasal endoscopic Lund-Kennedy score and CT imaging Lund-Mackay score among patients with CRS of each genotype before surgery. In patients with the AA genotype, the changes in VAS score(5.74±1.10), Lund Kennedy score(5.92 ± 1.14), and CT imaging Lund-Mackay score(13.26±4.26) were significantly higher than in patients with the AG(4.37±0.86, 5.37±1.24, 10.82±3.77) and GG(4.26±0.80, 5.18±1.56, 10.10±3.53) genotype(P<0.05). However, there were no marked difference between patients with the AG genotype and those with the GG genotype(P>0.05). Compared with patients with non-eosinophilic sinusitis, Among them, the differences between the GG genotype and AG /AA genes were more significant in eosinophilic sinusitis compared to non-eosinophilic sinusitis(P<0.01). Conclusion:The FCER2(2206A>G) gene in patients with CRS has genetic polymorphism and is associated with the recovery of CRS patients after surgery, individual corticosteroid sensitivity, and subgroup variability.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/genética , Pólipos Nasales/complicaciones , Rinitis/tratamiento farmacológico , Rinitis/genética , Rinitis/complicaciones , Sinusitis/tratamiento farmacológico , Sinusitis/genética , Sinusitis/complicaciones , Corticoesteroides/uso terapéutico , Polimorfismo Genético , Endoscopía/métodos , Enfermedad Crónica , Receptores de IgE , Lectinas Tipo C
11.
Cell Death Dis ; 14(5): 335, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217473

RESUMEN

Necroptosis is a caspase-independent form of programmed cell death. Receptor interacting protein kinase 1 (RIPK1) is a key molecule in the initiation of necroptosis and the formation of the necrotic complex. Vasculogenic mimicry (VM) provides a blood supply to tumor cells that is not dependent on endothelial cells. However, the relationship between necroptosis and VM in triple-negative breast cancer (TNBC) is not fully understood. In this study, we found that RIPK1-dependent necroptosis promoted VM formation in TNBC. Knockdown of RIPK1 significantly suppressed the number of necroptotic cells and VM formation. Moreover, RIPK1 activated the p-AKT/eIF4E signaling pathway during necroptosis in TNBC. eIF4E was blocked by knockdown of RIPK1 or AKT inhibitors. Furthermore, we found that eIF4E promoted VM formation by promoting epithelial-mesenchymal transition (EMT) and the expression and activity of MMP2. In addition to its critical role in necroptosis-mediated VM, eIF4E was essential for VM formation. Knockdown of eIF4E significantly suppressed VM formation during necroptosis. Finally, through clinical significance, the results found that eIF4E expression in TNBC was positively correlated with the mesenchymal marker vimentin, the VM marker MMP2, and the necroptosis markers MLKL and AKT. In conclusion, RIPK1-dependent necroptosis promotes VM formation in TNBC. Necroptosis promotes VM formation by activating RIPK1/p-AKT/eIF4E signaling in TNBC. eIF4E promotes EMT and MMP2 expression and activity, leading to VM formation. Our study provides a rationale for necroptosis-mediated VM and also providing a potential therapeutic target for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Necroptosis/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
12.
Sci Rep ; 13(1): 6957, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117215

RESUMEN

Ring finger protein 31 (RNF31) has been found to play an important role in tumor immunity. However, the role of RNF31 in liver hepatocellular carcinoma (LIHC) has not been reported. Therefore, we investigated the expression and prognostic value of RNF31 in patients with LIHC and explored its relationship with immune cell infiltration. The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) dataset was downloaded to analyse the impact of RNF31 on the prognosis and immune cell infiltration of LIHC. The Tumor Immune Estimation Resource (TIMER) database was used to analyse the correlation between RNF31 and tumor immune cell infiltration in LIHC. Additionally, we analysed the relationship between RNF31 and tumor necrosis factor (TNF) as well as the interferon-gamma (IFN-γ) signaling pathway. The expression of RNF31 in LIHC was significantly higher than that in normal tissues. Increased RNF31 expression was associated with decreased overall survival (OS) and relapse-free survival (RFS). An increase in RNF31 expression was closely related to the infiltration levels of immune cells (e.g., natural killer (NK) cells, CD8 + T cells, and B cells). RNF31 was also positively correlated with the expression of immune checkpoint genes in LIHC. Moreover, RNF31 may participate in TNF and IFN-γ signaling pathways. In conclusion, RNF31 is a potentially valuable prognostic biomarker in LIHC. RNF31 is also associated with immune cell infiltration in LIHC. RNF31 may be a potential target for immunotherapy of LIHC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia , Factor de Necrosis Tumoral alfa , Pronóstico , Ubiquitina-Proteína Ligasas/genética
13.
Dig Liver Dis ; 55(5): 661-672, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36192339

RESUMEN

BACKGROUND: The development of human hepatocellular carcinoma (HCC) is a multistep process that is accompanied by progressive changes in the liver microenvironment, including immune evasion and angiogenesis. Lysyl oxidase-like 2 (LOXL2) has been suggested to contribute to tumour progression and metastasis; however, the underlying mechanism remains unclear. The purpose of the present study was to explore the relationship between LOXL2 and immune infiltration and vasculogenic mimicry (VM) and to identify the role of LOXL2 in HCC diagnosis prognosis evaluation. METHODS: The Cancer Genome Atlas (TCGA), UALCAN, GEPIA and Kaplan-Meier plotter databases were used to analyse LOXL2 expression and perform survival analysis. The Tumour Immune Estimation Resource (TIMER) was used to analyse immune cell infiltration, immune cell biomarkers and immune checkpoints. Immunohistochemistry (IHC) of 201 HCC samples was used to confirm the expression of LOXL2 and its relationship with VM. Coimmunoprecipitation (co-IP) and gain- and loss-of-function studies were performed to confirm the molecular mechanism of LOXL2 in VM. RESULTS: The expression of LOXL2 in HCC was higher than that in normal tissues at both the mRNA and protein levels. High expression of LOXL2 was associated with a poorer prognosis of HCC. The genetic alteration rate of LOXL2 was 5%. LOXL2 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. Co-IP showed that LOXL2 can interact directly with IQGAP1. Both gain- and loss-of-function studies showed that LOXL2 significantly induced cell migration, invasion and VM formation when IQGAP1 was upregulated. CONCLUSIONS: LOXL2 is involved in immune cell infiltration and promotes VM by upregulating IQGAP1. LOXL2 can be used as a novel biomarker for HCC diagnosis and prognosis prediction.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Pronóstico , Biomarcadores , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo
14.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201443

RESUMEN

Triple-negative breast cancer (TNBC) has a shorter survival time and higher mortality rate than other molecular subtypes. RSRC2 is a newly discovered tumor suppressor gene. However, the potential functional mechanism of RSRC2 in TNBC remains unknown so far. Multiple bioinformatics databases were used. A Human Transcriptome Array 2.0 analysis, ChIP-seq analysis, ChIP-qPCR, RT-qPCR, Western blot, cell function assays in vitro and a metastatic mouse model in vivo were performed to demonstrate the role of RSRC2 in TNBC. Through the analysis of various databases, RSRC2 expression was the lowest in TNBC tissues compared to other molecular subtypes. The low expression of RSRC2 was associated with a worse prognosis for patients with breast cancer. The transcriptome array, ChIP-seq and bioinformatics analysis identified that GRHL2 and SCIN might have a close relationship with RSRC2. The functional bioinformatics enrichment analysis and functional cell experiments showed that RSRC2 was involved in cell adhesion, cell proliferation, cell migration and invasion. Furthermore, RSRC2 expression suppressed SCIN expression but not GRHL2 expression. SCIN re-expression in the RSRC2 overexpression cells or SCIN knockdown in the RSRC2 knockdown cells reversed the cellular function caused by RSRC2. Mechanistically, RSRC2 transcriptionally inhibited SCIN expression. In summary, our study reveals that RSRC2 acts as a tumor suppressor in TNBC development and progression through negatively regulating SCIN-mediated cell function, thus providing a potential target for TNBC treatment.

15.
Pharm Biol ; 60(1): 1840-1849, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200648

RESUMEN

CONTEXT: Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao) is a traditional Chinese herbal medicine that is capable of anti-analgesic and anti-inflammatory effects. Bullatine A (BA) is one of the major active ingredients of this plant, and most of the previous studies reported that it has anti-analgesic effects. However, the mechanism of BA anti-inflammatory remains unclear. OBJECTIVE: This study investigates the anti-inflammatory activities of BA, both in vitro and in vivo, and elucidates its mechanism. MATERIALS AND METHODS: In vitro, BA (10, 20, 40 and 80 µM) was added to 1 µg/mL of lipopolysaccharide (LPS)-activated microglia BV2 cells and immortalized murine bone marrow-derived macrophages, respectively. After 6 h, the mRNA and protein levels of inflammatory factors were determined by real-time quantitative PCR and western blotting. In vivo, C57BL/6 mice were randomly divided into control, model (5 mg/kg dose of LPS) and treated groups (LPS with 5, 10 or 20 mg/kg dose of BA) to evaluate the anti-inflammatory efficacy of BA. RESULTS: BA significantly inhibited LPS-induced expression of inflammatory factors, such as IL-1ß, IL-6, TNF-α, inducible nitric oxide synthase (iNOS) and COX-2. Further investigations showed that BA reduced the translocation of NF-κB p65 (38.5%, p < 0.01). BA also reduced the phosphorylation of c-Jun N-terminal kinase (JNK) (11.2%, p < 0.05) and reactive oxygen species (ROS) generation (24.2%, p < 0.01). Furthermore, BA treatment attenuated the LPS-primed inflammatory response and liver and lung damage in vivo. CONCLUSIONS: BA can inhibit the inflammatory response in part through the ROS/JNK/NF-κB signalling pathway, providing a theoretical basis for the clinical application of BA in the treatment of periphery inflammatory diseases.


Asunto(s)
Medicamentos Herbarios Chinos , FN-kappa B , Alcaloides , Animales , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/metabolismo , Diterpenos , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Clin Med Insights Oncol ; 16: 11795549221109511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898391

RESUMEN

Background: Breast cancer (BC) is the most frequent malignancy in women worldwide and the leading cause of female cancer-associated death in the world. Grainyhead-like 2 (GRHL2) is an important gene involved in human cancer progression. However, the role of GRHL2 in BC is unknown. Methods: In this study, we used in vitro experiments to verify the role of GRHL2 expression in BC progression. We used 14 databases to analyse the expression level of GRHL2 in BC and its prognostic and diagnostic value. In addition, the correlation between GRHL2 expression and immune cell infiltration and DNA methylation was also analysed. Results: At the cellular level, overexpression of GRHL2 induced E-cadherin expression in BC cells with a mesenchymal phenotype and resulted in a hybrid epithelial/mesenchymal (E/M) phenotype, which is more strongly correlated with tumour aggressiveness than a pure mesenchymal phenotype. Through analysis of various databases, we found that tumour tissue had a higher expression level of GRHL2. High expression of GRHL2 was associated with worse prognosis of BC patients and indicated that GRHL2 had significant diagnostic value. Grainyhead-like 2 is also related to immune infiltration and regulated by DNA methylation. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that GRHL2-related signalling pathways in BC were related to tumour cell proliferation, invasion, and angiogenesis. Conclusions: In summary, evidence indicates that GRHL2 can be used as a prognostic and diagnostic biomarker for BC.

17.
Ann Diagn Pathol ; 60: 152001, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780638

RESUMEN

OBJECTIVE: The aim of this study was to explore the expression and prognostic significance of PIK3CB in lung adenocarcinoma (LUAD) and to analyse the possible molecular mechanism that promotes LUAD development. METHODS: Differences of PIK3CB expression at transcriptional level between LUAD and normal tissues were analysed with the Timer and UALCAN databases. Then, immunohistochemical staining was performed to investigate PIK3CB expression at the protein level, and relationships between PIK3CB and clinical characteristics were accessed. Univariate and multivariate Cox regression were performed to identify the independent prognostic risk factors for LUAD. Genetic alterations were analysed using the cBioPortal database. The main coexpressed genes and enrichment pathways of PIK3CB were estimated with the LinkedOmics database. RESULTS: Compared with normal tissues, PIK3CB was higherly expressed in LUAD at the transcriptional level and protein level, respectively. PIK3CB expression was closely related to prognosis of LUAD patients, and PIK3CB protein expression was associated with lymph node metastasis and pathological differentiation, but not related to sex, age, pleural invasion, vascular invasion, tumour site, tumour size or clinical stage. PIK3CB and tumour size were independent risk factors for LUAD patients. The expression of PIK3CB was negatively correlated with AKT1 and AKT2, but there was no significant correlation with AKT3, and strong positive correlations with ARMC8, DNAJC13 and PIK3R4. The main enrichment pathways of PIK3CB and related genes included adherens junctions and the phosphatidylinositol signalling pathways, ErbB signalling pathways, Hedgehog signalling pathways, and C-type lectin receptor signalling pathways. Therefore, we hypothesized that PIK3CB expression did not promote LUAD development through the classical PI3K/AKT pathway. CONCLUSION: High PIK3CB expression was associated with the development of LUAD and worse prognosis. PIK3CB was an independent risk factor for LUAD patients. Therefore, this study provides a reliable reference for the prognostic assessment and targeted therapy for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/genética , Proteínas del Dominio Armadillo , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas Hedgehog , Humanos , Lectinas Tipo C , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Pronóstico , Proteínas Proto-Oncogénicas c-akt
18.
J Gastroenterol ; 57(10): 784-797, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802258

RESUMEN

BACKGROUND: Currently, the molecular mechanism of the interaction between lncRNAs and microRNAs (miRNAs) and the target of miRNAs in tumor vasculogenic mimicry (VM) formation have not been clarified. Our aim is to study the interaction between lncRNA n339260 and miRNA30e-5p in the formation of VM. METHODS: Animal xenografts were established, 104 hepatocellular carcinoma (HCC) patients' frozen tissues were obtained and HCC cells in vitro were used to observe the role of n339260 in HCC progression. RESULTS: In vivo experiment showed lncRNA n339260 promoted tumor growth and VM formation. LncRNA n339260 and miRNA30e-5p were found to be associated with VM formation, metastasis and survival time in HCC patients. In vitro experiment showed that LncRNA n339260 could inhibit miRNA30e-5p expression and TP53INP1 was found to be the downstream targets of miRNA30e-5p. Snail, MMP2, MMP9, VE-cadherin, vimentin and N-cadherin overexpression and the downregulation of TP53INP1 and E-cadherin were observed in HCCLM3 and HepG2 cells overexpressing lncRNA n339260 or in cells with decreased expression of miRNA30e-5p. CONCLUSION: LncRNA n339260 promotes the development of VM, and lncRNA n339260 may enhance Snail expression by decreasing the expression of miRNA30e-5p, thereby reducing TP53INP1 expression. Therefore, a potential lncRNA n339260- miRNA30e-5p- TP53INP1 regulatory axis was associated with HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Cadherinas/metabolismo , Carcinoma Hepatocelular/patología , Proteínas Portadoras/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vimentina/genética , Vimentina/metabolismo
19.
Front Pharmacol ; 13: 847605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721113

RESUMEN

Exportin 1 (XPO1) is an important transport receptor that mediates the nuclear export of various proteins and RNA. KPT-8602 is a second-generation inhibitor of XPO1, demonstrating the lowest level of side effects, and is currently in clinical trials for the treatment of cancers. Previous studies suggest that several first-generation inhibitors of XPO1 demonstrate anti-inflammation activities, indicating the application of this drug in inflammation-related diseases. In this study, our results suggested the potent anti-inflammatory effect of KPT-8602 in vitro and in vivo. KPT-8602 inhibited the activation of the NF-κB pathway by blocking the phosphorylation and degradation of IκBα, and the priming of NLRP3. Importantly, the administration of KPT-8602 attenuated both lipopolysaccharide (LPS)-induced peripheral inflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuroinflammation in vivo. In addition, the tissue damage was also ameliorated by KPT-8602, indicating that KPT-8602 could be used as a novel potential therapeutic agent for the treatment of inflammasome-related diseases such as Parkinson's disease, through the regulation of the NF-κB signaling pathway and the NLRP3 inflammasome.

20.
J Gastroenterol Hepatol ; 37(4): 714-726, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35062042

RESUMEN

BACKGROUND AND AIM: Vasculogenic mimicry (VM) is a unique blood supply pattern in malignant tumors that is closely associated with metastasis and poor prognosis. The Hippo signaling effector TAZ is upregulated in several cancers, promoting cancer proliferation and metastasis. This study aimed to identify the function of TAZ and its regulatory mechanism in promoting VM in gastric cancer (GC). METHODS: The expression of TAZ and TEAD4 and their correlations with overall survival and VM-related markers were analyzed in 228 cases of GC. The regulatory mechanism of TAZ and its interaction with TEAD4 in epithelial-mesenchymal transition (EMT) and VM were investigated in vitro and in vivo. RESULTS: TAZ was highly expressed in GC samples and was associated with shorter patient survival time. TAZ expression was positively correlated with TEAD4 and VM in patients with GC. TAZ enhanced the migration and invasion capacity of GC cells through EMT in vitro and upregulated the expression of VM-associated proteins, including VE-cadherin, MMP2, and MMP9, thus promoting VM formation. Overexpression of TAZ accelerated the growth of subcutaneous xenograft and promoted VM formation in vivo. Co-immunoprecipitation assays showed that TAZ can directly bind to TEAD4, and in vitro experiments showed that this binding mediates the function of TAZ in regulating EMT and VM formation in GC. CONCLUSIONS: TAZ promotes GC metastasis and VM by upregulating TEAD4 expression. Our findings expand the role of TAZ in VM and provide new theoretical support for the use of antiangiogenic therapy in the treatment of advanced GC.


Asunto(s)
Neoplasias Gástricas , Factores de Transcripción de Dominio TEA , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neoplasias Gástricas/patología , Factores de Transcripción de Dominio TEA/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA